期刊文献+

基于效用表的快速高平均效用挖掘算法 被引量:5

Fast high average-utility itemset mining algorithm based on utility-list structure
在线阅读 下载PDF
导出
摘要 高效用项集挖掘在数据挖掘领域中受到了广泛的关注,但是高效用项集挖掘并没有考虑项集长度对效用值的影响,所以高平均效用项集挖掘被提出;而目前的一些高平均效用项集挖掘算法需要耗费大量的时间才能挖掘出有效的高平均效用项集。针对此问题,给出了一个高平均效用项集挖掘的改进算法——FHAUI。FHAUI算法将效用信息保存到效用列表中,通过效用列表的比较来挖掘出所有的高平均效用值,同时FHAUI算法还采用了一个二维矩阵来有效减少二项效用值的连接比较次数。最后将FHAUI算法在多个经典的数据集上测试。实验结果表明,FHAUI算法在效用列表的连接比较次数上有了极大的降低,同时其时间性能也有非常大提高。 In the field of data mining, high utility itemset mining has been widely studied. However, high utility itemset mining does not consider the effect of the itemset length. To address this issue, high average-utility itemset mining has been proposed. At present, the proposed high average utility itemset mining algorithms take a lot of time to dig out the high averageutility itemset. To solve this problem, an improved high average itemset mining algorithm, named FHAUI ( Fast High Average Utility Itemset), was proposed. FHAUI stored the utility information in the utility-list and mined all the high average-utility itemsets from the utility-list structure. At the same time, FHAUI adopted a two-dimensional matrix to effectively reduce the number of join-operations. Finally, the experimental results on several classical datasets show that FHAUI has greatly reduced the number of join-operations, and reduced its cost in time consumption.
出处 《计算机应用》 CSCD 北大核心 2016年第11期3062-3066,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61370108)~~
关键词 平均效用 高效用 模式挖掘 数据挖掘 频繁模式 average utility high utility pattern mining data mining frequent pattern
作者简介 王敬华(1965-),男,湖北红安人,副教授,硕士,主要研究方向:数据挖掘、现代信息系统; 通信作者电子邮箱wwwlxzwww@163.com罗相洲(1991-),男,湖北武汉人,硕士研究生,主要研究方向:数据库、数据挖掘; 吴倩(1990-),女,湖北汉川人,硕士研究生,主要研究方向:数据挖掘、复杂网络。
  • 相关文献

参考文献2

二级参考文献25

  • 1AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[ C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1993:207-216.
  • 2AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[ C]// VLDB 1994: Proceedings of the 20th International Conference on Very Large Database. [ S. l. ] : Morgan Kaufmann, 1994: 478 - 499.
  • 3HAN JIAWEI, KAMBER M. Data mining: Concepts and techniques [M].影印版.北京:高等教育出版社,2001.
  • 4HAN JIAWEI, PEI JIAN, YIN YIWEN. Mining frequent patterns without candidate generation[J]. ACM SIGMOD Record, 2000, 29 (2): 1-12.
  • 5ZHOU QINGHUA, CHU W W, LU BAOJING. SmartMiner: A depth first algorithm guided by tail information for mining maximal frequent itemsets[ C]//ICDM 2002: Proceedings of IEEE International Conference on Data Mining. Washington, DC: IEEE, 2002: 570- 577.
  • 6GRAHNE G, ZHU JIANFEI. Fast algorithms for frequent itemset mining using FP-trees[ J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(10) : 1347 - 1362.
  • 7PIETRACAPRINA A, ZANDOLIN D. Mining frequent itemsets using patficia tries[C] //FIMI '03: Proceedings of the 1st Workshop on Frequent Itcmset Mining Implementations. Melbourne, Florida, USA: [ s. n. ], 2003:204 -208.
  • 8朱明.数据挖掘[M].2版.合肥:中国科学技术大学出版社,2008.
  • 9Frequent itemset mining implementations repository[ EB/OL]. [ 2010 -01 -25]. http: //tirol. cs. helsinkl. ft.
  • 10Tseng V S,Shie B,Wu C,et al.Efficient algorithms for mininghigh utility itemsets from transactional databases[J].IEEE Transa-ctions on Knowledge and Data Engineering,2012(1); 1-10.

共引文献28

同被引文献19

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部