期刊文献+

基于群智能算法优化神经网络的网络安全事件分析 被引量:3

Network security event analysis based on swarm intelligence algorithm optimizing neural network
在线阅读 下载PDF
导出
摘要 研究一种基于群智能算法优化神经网络的网络安全事件分析模型,使用遗传算法和LMS算法对常规RBF神经网络中的隐含层神经元个数、基函数中心以及各层连接阈值和权值进行优化,得到最优解,从而提高RBF神经网络模型的训练效率和精度,提高基于RBF神经网络的网络安全事件分析效率和准确度。使用KDD CUP99数据集中的网络入侵事件数据对研究的网络安全入侵事件分析模型进行实例研究,测试结果表明,该分析模型相比常规神经网络算法建立的模型具有更高的识别准确率,能够准确识别分析正常事件和四种网络攻击入侵事件。 A network security event analysis model based on swarm intelligence algorithm optimizing neural network is stu- died. The genetic algorithm and LMS algorithm are used to optimize the hidden layer neurons quantity, basis function center, connection threshold and weight of each layer of the conventional RBF neural network, so as to obtain the optimal solution, im- prove the training efficiency and accuracy of the RBF neural network model, and the efficiency and accuracy of the network se- curity event analysis based on RBF neural network. The network intrusion event data in KDD CUP99 dataset is used to perform the instance study for the network security intrusion events analysis model. The test results show that the analysis model has more recognition accuracy than the model established by the conventional neural network algorithm, and can accurately identify and analyze the normal events and four network attack events.
作者 高峰 GAO Feng(Software Engineering Institute, Chongqing University of Arts and Sciences, Chongqing 402160, China)
出处 《现代电子技术》 北大核心 2016年第21期123-126,共4页 Modern Electronics Technique
关键词 遗传算法 LMS算法 RBF神经网络 入侵识别 网络安全事件分析 genetic algorithm LMS algorithm RBF neural network intrusion detection network security event analysis
作者简介 高峰(1982-),男,重庆长寿人,实验师。研究方向为计算机科学与技术、网络工程。
  • 相关文献

参考文献11

二级参考文献96

  • 1卢涛,陈德钊.径向基网络的研究进展和评述[J].计算机工程与应用,2005,41(4):60-62. 被引量:27
  • 2陈瑛,罗鹏飞.基于神经网络的混沌时间序列建模及预测[J].计算机工程与应用,2005,41(11):77-79. 被引量:16
  • 3张坤华,王敬儒,张启衡.基于边界不变特征的扩展目标识别方法[J].光电工程,2005,32(8):1-5. 被引量:3
  • 4王连亮,陈怀新.图像识别的RSTC不变矩[J].数据采集与处理,2006,21(2):225-229. 被引量:5
  • 5XIA Limin.Vehicle recognition using boosting neural network classifiers[C]//Proceedings of the Sixth World Congress on Intelligent Control and Automation.Dalian,China,2006:9641-9644.
  • 6GOYAL A,VERMA B.A neural network based approach for the vehicle classification[C]//Proceedings of Computational Intelligence in Image and Signal Processing.Honolulu,USA,2007:226-231.
  • 7SHIN P,JASSO H,TILAK S,et al.Automatic vehicle type classification using strain gauge sensors[C]//International Conference on Pervasive Computing and Communications Workshops.White Plains,USA,2007:425-428.
  • 8LIM T R,GUNTORO A T.Car recognition using Gabor filter feature extraction[C]//IEEE Asia-Pacific Conference on Circuits and Systems.Singapore,2002:451-455.
  • 9KI Y K,BAIK D K.Vehicle-classification algorithm for single-loop detectors using neural networks[J].IEEE Transactions on Vehicular Technology,2006,55(6):1704-1711.
  • 10LIN C T,YEH C M,CHUNG J F,et al.Support vector based fuzzy neural network for pattern classification[J].IEEE Transactions on Fuzzy Systems,2006,14(1):31-41.

共引文献112

同被引文献32

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部