期刊文献+

基于微钙化检测的计算机辅助诊断系统对于乳腺导管原位癌的诊断价值 被引量:8

The Performance of Computer-Aided Diagnosis for DCIS Based on Classification of Clustered Microcalcifications
原文传递
导出
摘要 目的探讨计算机辅助诊断系统(CADx)在微钙化检测与特征提取基础上的分类对于导管原位癌(DCIS)的诊断价值。方法回顾性分析经南方医科大学附属南海医院及中山大学肿瘤防治中心行乳腺X线摄影检查发现微钙化并经病理学证实的623例患者影像资料,其中,良性病变378例,DCIS 245例。用受试者操作特征曲线(ROC)分别分析采用计算机方法提取的每个微钙化特征对于这两类病变判别的诊断效能,和应用所有微钙化特征集合并基于支持向量机(SVM)分类器的CADx的分类诊断效能。结果 CADx对于良性病变和DCIS这两类病变微钙化分类的ROC曲线下面积(Az)为0.853;特异度、准确率、敏感度分别为70.1%、82.1%、90.7%,高于单个微钙化特征的诊断效能。结论采用CADx对于DCIS微钙化能较好的检测与定位,对乳腺癌早期病变的识别能提供有益的参考。 Objective To explore the classification performance of Computer-aided Diagnosis System( CADx) for DCIS( Ductal Carcinoma in Situ) based on the detection and extraction of clustered microcalcifications. Methods Mamammograms from 623 female patients,including 375 benign cases and 248 DCIS,were pathologically confirmed and retrospectively analyzed. ROC curve was used to evaluate the diagnostic performance of each feature of microcalcifications,and the performance of CADx,which employed all features as the input data to SVM classifier. Results For the performance of CADx,area under the ROC curve was 0. 853,with specificity 70. 1%,accuracy 82. 1% and sensitivity 90. 7%. With the combination of all features,the performance of CADx exceeded every single feature. Conclusion CADx in our study gets a good detection and recognition of microcalcifications of DCIS. It provides a promising reference for the earlier diagnosis of breast cancer.
出处 《临床放射学杂志》 CSCD 北大核心 2016年第9期1352-1356,共5页 Journal of Clinical Radiology
基金 佛山市医学类科技攻关项目(编号:2013081750) 广东省科技计划项目(编号:2016B090918066)
关键词 乳腺X线摄影 微钙化 DCIS CADx SVM Mammography Microcalcification DCIS CADx SVM
作者简介 通讯作者
  • 相关文献

参考文献16

  • 1Winchester DP,Jeske JM,Goldschmidt RA. The diagnosis and man- agement of ductal carcinoma in situ of the breast [ J ]. Am Cancer J Clin, 2000,50 : 184-200.
  • 2Stephen A, Feig MD. Ductal carcinoma in situ. Implications for screening mammography [ J]. Radiologic Clinics of North America, 2000,38:653 68.
  • 3American College of Radiology. BI-RADS-Mammography. In: ACR Breast Imaging and Data Systerm, Breast Imaging Atlas. 4th ed. Re- ston, Va :2003,230-234.
  • 4顾雅佳,王玖华,涂小予,张廷璆.乳腺导管原位癌的钼靶X线表现与病理对照研究[J].中华放射学杂志,2002,36(3):240-244. 被引量:152
  • 5Muttarak M, Pojchamarnwiputh S, Chaiwan B. Breast carcinomas: why are they missed [ J ]. Singapore Medical Journal,2006,47.851- 857.
  • 6Malich A, Fischer DR, Bittcher J. CAD for mammography : the tech- nique,results,current role and further developments [ J ]. European Journal of Radiology,2006,16. 1449-1460 .
  • 7Cheng HD, Cai X, Chert X, et al. Computer-Aided Delection and Classification of Micrnca|cifications in Mammograms : A Survey [J ]. Pattern Recognition ,2003,36:2967-2991.
  • 8Wei D, Chan HI, Helvie MA, et al. Classification of mass and normal breast tissue on digital mammograms : multi resolution texture analysis [ J ]. Medical Physics, 1995,22 : 1501-1513.
  • 9Shoo YZ, Liu LZ, Bie MJ, et ah Characterizing the clustered micro- calcifications on mammograms to predict the pathological classifica- tim and grading: a mathematical modeling approach. Digit hna- ging,2011,24:764-771.
  • 10El-Naqa I, Yang Y, Werniek MN, el al. A support vector machine approach tot detection of mieroealeifications [ J ]. IEEE Trans Med hnaging,2002,21 : 1552-1563.

共引文献151

同被引文献44

引证文献8

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部