期刊文献+

Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells 被引量:2

Hexagonal FeS nanosheets with high-energy (001) facets: Counter electrode materials superior to platinum for dye-sensitized solar cells
原文传递
导出
摘要 The catalytic activity of materials is highly dependent on their composition and surface structure, especially the density of low-coordinated surface atoms. In this work, we have prepared two-dimensional hexagonal FeS with high-energy (001) facets (FeS-HE-001) via a solution-phase chemical method. Nanosheets (NSs) with exposed high-energy planes usually possess better reaction activity, so FeS-HE-001 was used as a counter electrode (CE) material for dye-sensitized solar ceils (DSSCs). FeS-HE-001 achieved an average power conversion efficiency (PCE) of 8.88% (with the PCE of champion cells being 9.10%), which was almost 1.15 times higher than that of the Pt-based DSSCs (7.73%) measured in parallel. Cyclic voltammetry and Tafel polarization measurements revealed the excellent electrocatalytic activities of FeS-HE-001 towards the I-3/I- redox reaction. This can be attributed to the promotion of photoelectron transfer, which was measured by electrochemical impedance spectroscopy and scanning Kelvin probe, and the strong I-3 adsorption and reduction activities, which were investigated using first-principles calculations. The presence of high-energy (001) facets in the NSs was an important factor for improving the catalytic reduction of I-3. We believe that our method is a promising way for the design and synthesis of advanced CE materials for energy harvesting. The catalytic activity of materials is highly dependent on their composition and surface structure, especially the density of low-coordinated surface atoms. In this work, we have prepared two-dimensional hexagonal FeS with high-energy (001) facets (FeS-HE-001) via a solution-phase chemical method. Nanosheets (NSs) with exposed high-energy planes usually possess better reaction activity, so FeS-HE-001 was used as a counter electrode (CE) material for dye-sensitized solar ceils (DSSCs). FeS-HE-001 achieved an average power conversion efficiency (PCE) of 8.88% (with the PCE of champion cells being 9.10%), which was almost 1.15 times higher than that of the Pt-based DSSCs (7.73%) measured in parallel. Cyclic voltammetry and Tafel polarization measurements revealed the excellent electrocatalytic activities of FeS-HE-001 towards the I-3/I- redox reaction. This can be attributed to the promotion of photoelectron transfer, which was measured by electrochemical impedance spectroscopy and scanning Kelvin probe, and the strong I-3 adsorption and reduction activities, which were investigated using first-principles calculations. The presence of high-energy (001) facets in the NSs was an important factor for improving the catalytic reduction of I-3. We believe that our method is a promising way for the design and synthesis of advanced CE materials for energy harvesting.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第10期2862-2874,共13页 纳米研究(英文版)
基金 We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 21473051 and 21371053), Application Technology Research and Development Projects in Harbin (No. 2013AE4BW051) and International Science & Technology Cooperation Program of China (No. 2014DFR41110).
关键词 FeS nanosheets high-energy facets counter electrode first-principles calculation catalytic reduction FeS nanosheets,high-energy facets,counter electrode,first-principles calculation,catalytic reduction
作者简介 Kai Pan, kaipan@hlju.edu.cn;Honggang Fu, fuhg@vip.sina.com
  • 相关文献

参考文献1

二级参考文献3

共引文献25

同被引文献1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部