期刊文献+

一种有效的估计关系数据库中空值的方法 被引量:1

An Efficient Method for Estimating Null Values in Relational Database
在线阅读 下载PDF
导出
摘要 由于客观世界的复杂性,信息缺失、不确定信息是普遍存在的。数据库作为表达现实世界的一种工具,使用空值来表达信息缺失的问题。针对关系数据库中的空值问题,提出一种基于模糊聚类和线性回归的空值估计方法。该方法首先对数据表中的数据进行挖掘,找出与被估计属性相关联的属性集。该过程仅利用数据本身提供的信息,避免了由专家决定条件属性时由于主观性造成的误差。其次根据所得属性集进行模糊聚类得到对原始数据的一个划分,再基于所得分簇和线性回归给出一个估计关系表中空值的方法。最后利用平均绝对错误率来衡量算法估值的准确率。实验结果表明该方法估值的结果与其他方法相比具有较高的准确率。 Missing information, indefinite information as well as ambiguous information truly exists due to the complexity of the real world. Relational database, as an important tool to express the real world, use null value to express the missing of information. Focusing on estimation of null values in relational databases, the paper proposes a new method to estimate null values based on fuzzy clustering and multiple regressions. It starts with data mining of databases, finds out the at- tribute set connected with estimated attributes. The information provided by data exclusively without any other prior knowl- edge leads to relatively objective condition attributes, thus avoiding certain errors resulted from subjectivity when it is up to professors to determine condition attributes. Then we obtained a partition of original data based on the attribute set. And the clustering and multiple regressions we come up with enable us to find a method to estimate null values in databases. Finally, mean of absolute error rate is adopted to measure the estimation accuracy. The experiments results show that the proposed method has relatively high accuracy.
出处 《计算技术与自动化》 2016年第3期110-114,共5页 Computing Technology and Automation
基金 南京航空航天大学研究生创新基地(实验室)开放基金资助项目(kfjj201460)
关键词 关系数据库 空值 模糊聚类 多元线性回归 relational database null value fuzzy clustering multiple linear regression
作者简介 刘力(1992-),男,安徽池州人,硕士,研究方向:数据管理与知识工程。通讯联系人,E-mail:18856671287@163.com
  • 相关文献

参考文献13

  • 1CHEN S M ,YE M S. Generating Fuzzy Rules from Rela- tional Database Systems for Estimating Null Values[J]. Cy- berneties & Systems, 1997, 28(8) :695-723(29).
  • 2CHEN S M, HUANG C M. Generating weighted fuzzy rules from relational database systems for estimating null values u- sing genetic algorithms [J]. IEEE Transactions on Fuzzy Systems, 2003, 11(4) :495-506.
  • 3SHYI-MING CHEN: SHIH-WEI LEE. A new method to generate fuzzy rules from relational database system for esti- mating null values[J]. Cyberneties\s\systems:an Interna- tional Journal, 2010, 34(1):33-57.
  • 4CHEN Shyi-ming, CHEN Hsin-Horng. Estimating null val- ues in the distributed relational databases environment[J]. Cybernetics\s\systems, 2000, 31(8):851-871.
  • 5Y.K. Jain and V. Suryawanshi. A New Approach for Han- dling Null Values in Web Log Using KNN and Tabu Search KNN. International Journal of Data Mining & Knowledge Management Process, 2011, 1(5) :9-19.
  • 6JERZY W. Grzyma00a-Busse. Mining Incomplete Data-A Rough Set Approach[J]. Lecture Notes in Computer Sci- ence, 2011, 20:49-74.
  • 7李聪,梁昌勇,杨善林.基于粗糙集的不完备信息系统空值估算方法[J].计算机集成制造系统,2009,15(3):604-608. 被引量:9
  • 8张伟钢,潘泉,张洪才.基于相似关系的数据库分类不一致程度评价[J].计算机学报,2008,31(1):91-103. 被引量:4
  • 9Zadeh. Fuzzy sets[J]. Information and control, 1965, 8(3): 338-353.
  • 10Dunn. Well-separated clusters and optimal fuzzy partitions [J]. Journal of cybernetics, 1974, 4(1): 95-104.

二级参考文献40

  • 1盛步云,林志军,丁毓峰,罗丹,谢庆生.基于粗糙集的协同设计冲突消解事例推理技术[J].计算机集成制造系统,2006,12(12):1952-1956. 被引量:16
  • 2孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 3焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 4PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11 (5) : 341-356.
  • 5SLOWINSKI R, STEFANOWSKI J. Handing various types of uncertainty in the rough set approach[C]//Proeeedings of International Workshop on Rough Sets and Knowledge Diseov cry:Rough Sets, Fuzzy Sets and Knowledge Discovery. London, UK:Springer-Verlag, 1993:366-376.
  • 6THIESSON B. Accelerated quantification of Bayesian net works with incomplete data[C]//Proceedings of the 1st Inter national Conference on Knowledge Discovery and Data Min ing. Menlo Park, Cal., USA;AAAI Press, 1995:306-311.
  • 7SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based on similarity [J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336.
  • 8SARWAR B M. Sparsity, scalability, and distribution in recommender systems[D]. Minneapolis, Minn. , USA: University of Minnesota, 2001.
  • 9薛俊芳,向东,邱长华.基于粗糙集的零件合并专家知识获取方法[J].计算机集成制造系统,2007,13(8):1658-1664. 被引量:8
  • 10章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..

共引文献155

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部