期刊文献+

区域尘肺病估算综合指标筛选中主成分分析法的应用

Application of principal component analysis in comprehensive indicator screening for pneumoconiosis in different regions
原文传递
导出
摘要 目的探讨主成分分析法在区域尘肺病估算综合评价指标筛选中的应用。方法利用河北省职业健康状况调查获得的172个县(区)的11项与尘肺病危害预测主要相关的因子数据,进行主成分分析,得出各区域的尘肺病危害程度并通过GIS直观呈现其分布。结果5个尘肺病主成分特征值分别为4.103、2.341、0.981、0.943、0.726,贡献值分别为37.299%、21.286%、8.919%、8.572%、6.596%.按主成分综合得分值大小,利用GIS按自然断点法将全省172个县(区)分为尘肺病危害程度较轻、中等、较重3级,危害等级及县域数(主成分得分值范围)分别为46个危害较重县(O.30~1.15)、69个危害中等县(-0.24~0.27)、57个危害较轻县(-0.69~-0.25)。结论主成分分析法可优化区域尘肺病估算综合评价指标,综合得分值可量化和直观显示区域尘肺病危害程度;唐山市、承德市、石家庄市、邯郸市是区域尘肺病危害中最严重的地区。 Objective-To investigate ihe application of principal component analysis in comprehensive indicator screening for pneumoconiosis in different regions. Methods A principal component analysis was performed for the data of 11 factors associated with the prediction of pneumoconiosis hazard and collected in the investigation on occupational health status conducted in 172 counties (districts) in Hebei, China. The degree of pneumoconiosis hazard in different regions was obtained and intuitively presented by GIS. Results The eigenvalues of 5 principal components of pneumoconiosis were 4.103, 2.341, 0.981, 0.943, and 0.726, respectively, and the contribution values were 37.299% , 21.286% , 8.919% , 8.572% , and 6.596% , respectively. According to the comprehensive value of principal components, GIS Natural Breaks was used to divide the degree of pneumoconiosis hazard in 172 counties (districts) in Hebei into mild, moderate, and severe grades. Of all the counties, 46 had severe pneumoconiosis hazard, 69 had moderate pneumoconiosis hazard, and 57 had mild pneumoconiosis hazard, and the ranges of the score of principal components were 0.30-1.15, - 0.24 to 0.27, and -0.69 to -0.25, respectively. Conclusion Principal component analysis can optimize the comprehensive indicators for the evaluation of regional pneumoeoniosis. The comprehensive score of principal components can quantify and intuitively show the degree of pneumoconiosis hazard in different regions. Tangshan, Chengde, Shijiazhuang, and Handan have the most severe pneumoconiosis hazard.
出处 《中华劳动卫生职业病杂志》 CAS CSCD 2016年第9期678-680,共3页 Chinese Journal of Industrial Hygiene and Occupational Diseases
基金 河北省卫生厅医学科学研究重点课题(20130086)
关键词 尘肺 主成分分析 质量指标 卫生保健 Pneumoconiosis Principal component analysis Quality indicators, health care
作者简介 通信作者:李建国,Email:hblpssl3@163.com
  • 相关文献

参考文献6

二级参考文献71

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部