期刊文献+

基于数据挖掘的公开网络军事情报分析研究 被引量:5

Research on Military Intelligence Analysis of Open Network Based on Data Mining
在线阅读 下载PDF
导出
摘要 [目的/意义]从军事情报工作角度来看,网络的兴起和广泛应用为情报获取开辟了新天地,但网络中持续增长的数据量,使传统的情报分析变得捉襟见肘。因此,丰富和发展军事情报分析方法,对弥补当前情报分析中存在的不足具有一定的现实意义。[方法/过程]针对传统的军事情报分析方法无法实现对网络上海量信息进行深入挖掘分析,获取军事所需的深层情报知识,将数据挖掘技术引入到军事情报分析之中,构建了基于数据挖掘的网络军事情报分析模型。[结果/结论]该模型中基于语义关联的情报分析算法比传统的关联分析具有一定的优越性,可以有效地提高了军事情报的分析效率和精度。 [ Purpose/Significance ] From the point of view of military intelligence, network widely used for obtaining intelligence breaks new ground, but the growing amount of data in network makes the traditional intelligence analysis become stretched. Therefore, to enrich and develop the military intelligence analysis method, and to make up for deficiencies has certain practical significance for the current intel- ligence analysis. [ Method/Process]In order to make up for the failure of traditional intelligence analysis methods and to implement the deep mining on vast amounts of network information so as to obtain the intelligence knowledge required by army, this paper combines data mining technology with military intelligence to construct a military intelligence analysis model of open network based on data mining. [ Re- suit/Conclusion] The model based on intelligence analysis algorithms associated with semantics has certain advantages over traditional re- lational analysis, it can effectively improve the efficiency and accuracy of the military intelligence analysis.
出处 《情报杂志》 CSSCI 北大核心 2016年第9期12-15,共4页 Journal of Intelligence
关键词 数据挖掘 公开网络 军事情报 智能分析 data mining open network military intelligence intelligent analysis
作者简介 张月婷(ORCID:0000—0001—5130—6518),女,1990年生,硕士研究生,研究方向:情报分析; 韩全惜(ORCID:0000-0002-8817-5336),男,1965年生,硕士生导师,副教授,研究方向:信息系统开发、情报分析。
  • 相关文献

参考文献9

  • 1董欢.数据挖掘技术概述[J].信息产业,2011,36(3):100.
  • 2Zanasi A. Data mining, business and comprtitive intelligence throughlnternet [ EB/OL3. [ 2010-11 - 16 3. http ://www. ianus. cineca, it/venus/monitor/datam/zanasi, htm.
  • 3Cilmore J. Project X:Competitive intelligence data mining and a- nalysis[ J 3. Proceedings of SPIE-The International Society for Optical Engineering ,2001,4384:258-266.
  • 4Cobb P. Competitive intelligence through data mining[ J]. Com- petitive Intelligence and Managemeng,2003 ( 1 ) :80-92.
  • 5Gao J. Resolution and accuracy of terrain representation by grid GEMs at a micro scale [ J 3. Iternational Journal of Geographical Information Science, 1997,11 (2) : 199-212.
  • 6Jose Palazzo M, Stanley Loh, Leandro Krug Wives. Applying text mining on electronic messages for competitive intelligence [ C ]. Proc. of EC-Web 2004,LNCS3182,2004:277-286.
  • 7Juan Antonio Arrieta, Itziar Ricondo, Nerea Aranguren. Business intelligence system for strategic decision making in machine tool SMES[ J]. Digital Enterprise Technology ,2007 : 1-10.
  • 8张玉峰,何超.基于数据挖掘的企业竞争情报分析研究[J].情报学报,2012,31(1):65-71. 被引量:11
  • 9何超,张玉峰.基于语义关联分析的商务情报分析算法研究[J].情报杂志,2013,32(4):134-137. 被引量:12

二级参考文献19

  • 1包昌火 ,赵刚 ,黄英 ,李艳 .略论竞争情报的发展走向[J].情报学报,2004,23(3):352-366. 被引量:82
  • 2Bose R. Competitive intelligence process and tools forintelligence analysis [ J ]. Industrial Management and Data System ,2008,108 (4) :510-528.
  • 3Zanasi A. Data Mining, Business and Competitive In- telligence through Internet [ OL] [ 2010-11-16 ] http :/! www. ianus, cineca, it/venus/monitor/datam/zanasi, htm.
  • 4Gilmore J. Project X:Competitive intelligence data mining and analysis [ J ]. Proceedings of SPIE-The International Society for Optical Engineering,2001 (4384) : 258-266.
  • 5Cobb P. Competitive intelligence through data mining[ J]. Competitive Intelligence and Management, 2003 ( 1 ) : 80 -92.
  • 6Feldman R, Hirsh H. Mining Associations in Text in the Presence of Background Knowledge [ C ]//Knowledge Discovery and Data Mining,1996:343-346.
  • 7Holt J D, Chung S M. Muhipass Algorithms for Mining Association Rules in Text Databases [ J ]. Knowledge Information System, 2001,3 ( 2 ) : 168-183.
  • 8Han J, Fu Y. Discovery of multiple-level association rules from large databases [ C ]//Proc. 1995 Int. Conf. Very Large Databases ( VLDB' 95 ) , 1995:420-431.
  • 9HANJW KAMBERM 范明 孟小峰 译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 10DUNHAM M H.数据挖掘教程[M].郭崇慧,田凤占,勒晓明,等译.北京:清华大学出版社,2005.

共引文献21

同被引文献38

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部