期刊文献+

引入界面传热系数后铸型厚度与蓄热能力关系

The relationship of the mold thickness with thermal storage capacity after introducing the interfacial heat transfer coefficient
在线阅读 下载PDF
导出
摘要 采用硅铝合金(含Si 13.5%)为铸件材料,45号钢为铸型材料,引入铸造数值模拟重要的边界条件界面传热系数,同时改变铸型厚度,利用有限元分析软件ANSYS模拟了金属铸造过程温度场的分布规律,分析了铸型厚度变化对铸造温度场分布的影响。结果表明:引入界面传热系数可提高数值模拟的准确性;增加铸型壁厚可提高铸件凝固速度,当铸型壁厚增加到一定厚度后,对凝固速度的影响减弱以至消失。 In the follow experiment, this paper used silicon aluminum alloy (containing 13.5% Si) as casting material. And 45 steel as mold material. The interfacial heat transfer coefficient, which is the important bound- ary condition, was introduced in numerical simulation. And the thickness of the mold was changed. The distri- bution regularity of the temperature field in casting solidification was simulated used the finite element software ANSYS. In addition, it also changed the casting thickness of the mold to analyze the effect of the distribution of casting temperature field. Finally the resuhs indicate that the numerical simulation accuracy can be improved by introducing the interracial heat transfer coefficient. Furthermore, the solidification rate can be improved by rai- sing the casting thickness of the mold. In the process of the numerical simulation, when the mold wall-thickness was increased to a certain thickness, the affection was mitigated and almost eliminated.
出处 《重型机械》 2016年第4期40-43,共4页 Heavy Machinery
基金 大学生创新创业训练计划项目(201410060034)
关键词 ANSYS 金属铸造 界面传热系数 有限元分析 温度场 ANSYS metal casting interfacial heat transfer coefficient finite element analysis temperature field
作者简介 王启才(1991-),男,研究方向:计算机辅助工程分析。
  • 相关文献

参考文献7

二级参考文献93

  • 1L. Chen P.L. Wang P.N. Song J.Y. Zhang.FINITE ELEMENT NUMERICAL SIMULATION OF TEMPERATURE FIELD IN METAL PATTERN CASTING SYSTEM AND "REVERSE METHOD" OF DEFINING THE THERMAL PHYSICAL COEFFICIENT[J].Acta Metallurgica Sinica(English Letters),2007,20(3):217-224. 被引量:6
  • 2郭志鹏,熊守美,曺尚铉,崔正吉.热传导反算模型的建立及其在求解界面热流过程中的应用[J].金属学报,2007,43(6):607-611. 被引量:33
  • 3Itsuo OHNAKA, Akira S, Hiroshi O, et al. Porosity formation mechanism in Al- and Mg-Alloy castings and its direct simulation [A].Proc. ofMCSP6-2004 [C]. Taiwan: Kaohsiung, 2004. 3-11.
  • 4Wei WANG, Houfa SHEN and Beicheng LIU. Effect of electromagnetic field on fluid flow in continuous casting mold [A]. Proc.of MCSP6-2004 [C]. Taiwan: Kaohsiung, 2004. 13-20.
  • 5Hiroyuki NOMURA, Eiji K, Akira K. Pressure transfer during die casting and its numerical analysis [A]. MCSP6-2004 [C].Taiwan: Kaohsiung, 2004. 21-28.
  • 6Lim C H, Cho S H, Lee Y C and Choi J K. The basic constructions of intelligent expert system for riser design using database system and optimization tool [A]. Proc. of MCSP6-2004 [C]. Taiwan: Kaohsiung, 2004. 29-38.
  • 7Huaiyu DONG, Shoumei X and Wanli C. Dynamic optimization of computational time step for solidification simulation of casting processes[A]. Proc. of MCSP6-2004 [C]. Taiwan: Kaohsiung,2004. 51 - 58.
  • 8Sirrel B, Holliday M, Campbell J. The Benchmark Test 1995[A]. In Proceedings of International Conference on Modeling of Casting, Welding and Advanced Solidification Process Ⅶ [C].London, U K, 1995. 915-1013.
  • 9Ruey-Jer WENG, Jer-Haur K and Weng-Sing H. Application of mold filling analysis in the design of centrifugal casting process for a casting of turbine disc with blades [A]. Proc. of MCSP6-2004[C]. Taiwan: Kaohsiung, 2004. 131-140.
  • 10Seigeo KASHIWAI, Itsuo O, Akihiko K, et al. Numerical simulation and X-ray direct observation of mold filling during vacuum suction casting [A]. Proc. of MCSP6-2004 [C]. Taiwan:Kaohsiung, 2004. 107- 114.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部