期刊文献+

带股利分配的Black-Scholes市场中的最优投资-消费组合研究

A Note on the Optimal Consumption and Portfolio in a Dividend-paying Fractional Black-scholes Market
在线阅读 下载PDF
导出
摘要 针对经济个体有限财富的投资-消费分配问题,运用投资-消费组合期望效用最大化的评价方法,得出最优投资策略及预期收益。基于市场特性,以在带股利分配的、由多维分数次布朗运动驱动的Black-Scholes市场中的最优投资-消费问题为研究主题,并利用傅里叶分析工具,得到了对数和指数两种效用函数时的最优消费率和最优投资组合的显性表达式。 Aiming at the investment-consumption distribution problems of the economic individual' s limited wealth, using the expected utility maximizing method of the investment-consumption portfolio, the optimal investment-consumption strategy and the expected return are obtained. In view of the market features, we focus on the problem in the dividend-paying Black-Scholes market driven by the multiple fractional Brownian motion; also with the aid of the Fourier analysis, the explicit expressions of the optimal consumption rate and the optimal portfolio in this market for an agent with utility functions of both power and logarithmic types are given.
作者 钟勇
出处 《运筹与管理》 CSSCI CSCD 北大核心 2016年第4期168-171,共4页 Operations Research and Management Science
关键词 分数次布朗运动 带股利分配的Black-Scholes市场 最优投资-消费组合 fractional brownian motion dividend-paying black-scholes market optimal consu-mption and portfolio
作者简介 钟勇(1985-),男,安徽芜湖人,博士后,供职于中国长城资产管理公司,研究方向:金融工程。
  • 相关文献

参考文献14

  • 1Callegaro G. Optimal consumption problems in discontinu- ous markets[J]. Optimization, 2013, 6201): 1575-1602.
  • 2Cox J C, Huang C F. Optimal consumption and portfolio policies when asset prices follow a diffusion process [ J ]. J. Economic Theory, 1989, 49(1) : 33-83.
  • 3Hu Y Z, Oksendal B, Sulem A. Optimal portfolio in a fractional Black-Scholes market [ J ]. In Mathematical Physics and Stochastic Analysis, Essays in Honour of Ludvig Streit, eds. S. Albeverio et al. (World Scientific, 2000), 267-279.
  • 4Hu Y Z, Oksendal B, Sulem A. Optimal consumption and portfolio in a black-scholes market driven by fractional brownian motion [ J ]. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003, 6(4): 519-536.
  • 5Karatzas I. Optimization problems in the theory of contin- uous trading [ J]. SIAM J. Control Optim, 1989, 27 (6) : 1221-1259.
  • 6Karatzas I, Shreve S E. Methods of mathematics finance [ M ]. Application of Mathematics, Vol. 39 ( Springer- Verlag, 1998 ).
  • 7Nunno G D, Pamen 0 M, Oksendal B, Proske F. A gen- eral maximum principle for anticipative stochastic control and applications to insider trading[J]. Advanced mathe- matical methods for finance [ M ] : 181-221, Heidelberg: Springer, 2011.
  • 8Perera R S. Optimal investment, consumption-leisure, insurance and retirement choice [ J ]. Ann. Finance, 2013, 9(4) : 689-723.
  • 9Hu Y Z, Oksendal B. Fractional white noise calculus and applications to finance [ J ]. Infinite Dimensional Analy- sis, Quantum Probability and Related Topics, 2003, 6 (1): 1-32.
  • 10Elliott R J, Van Der Hoek J. A general fractional white noise theory and applications to finance [ J ]. Math. Finance, 2003, 13(2) : 301-330.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部