期刊文献+

固态锂二次电池关键材料中的空间电荷层效应:原理和展望 被引量:6

Space charge layer effect in rechargeable solid state lithium batteries:Principle and perspective
在线阅读 下载PDF
导出
摘要 空间电荷层效应源于两相界面电化学势平衡的热力学要求,最初被用于解释复合离子导体中离子电导率的显著增大现象,后来在更多的体系中得到应用和发展,并且不但可以定性而且可以定量地解释多种离子的界面输运行为。特别是在纳米尺寸体系中,体相效应大大减小,界面空间电荷层效应更为显著的增加,利用这一效应不仅可以调控电导的大小,还可以设计构筑具有奇异特性的人工导体。目前,固态锂二次电池的研究受到关注,其中电解质/电极界面或复合电极内部界面可能存在的空间电荷层效应也引起越来越多的重视。本文首先基于两相界面的缺陷化学,从热力学基础角度讨论了空间电荷层产生的原理,评述了典型导电体系中存在的空间电荷层效应及其对宏观性能的影响。在此基础上,探讨了固态锂二次电池中的空间电荷层效应、有关的表征方法,以及利用空间电荷层提高电池性能的可能。 The space charge layer (SCL) effects result from the requirement of thermodynamic equilibrium at the interface, which were firstly used to account for the abnormal conductivity enhancement in composite conductors. They were lateron developed to qualitatively and quantitatively explain the interracial transport behaviors in many other systems. Particularly, the SCL effects could be utilized to control the conductivity and construct artificial conductors in nanometer-scale systems. Rechargeable solid state lithium batteries have attracted much attention, especially the SCL effects at the interfaces between the electrolyte and the electrode or inside the composite electrode. In this paper, the principle of SCL based on defect chemistry near the two-phase boundary from the thermodynamical point of view is firstly presented. The SCL effects in several typical conducting systems as well as the influence on properties are reviewed. On this basis, the SCL effects in rechargeable solid state lithium batteries reported so far are reviewed. Characterization techniques of the SCL effects are introduced. Finally, the possibility of utilizing SCL effects to improve battery performance is addressed.
出处 《储能科学与技术》 CAS 2016年第5期668-677,共10页 Energy Storage Science and Technology
基金 国家自然科学基金(51532002) 国家重点基础研究发展计划(973)项目(2014CB921004)
关键词 空间电荷层 缺陷化学 界面电阻 二次固态锂电池 space charge layer defect chemistry interfacial resistance rechargeable solid statelithium battery
作者简介 第一作者:陈骋(1990~),男,博士研究生,研究方向为固态薄膜电池,E-mail:chencheng@student.sic.ac.cn; 通讯联系人:郭向欣,研究员,研究方向为固态离子导电储能材料与器件,E-mail:xxguo@mail.sic.ac.cn。
  • 相关文献

参考文献60

  • 1WAGNER C. The electrical conductivity of semi-conductors involving inclusions of another phase[J]. Journal of Physics and ChemistryofSolids, 1972, 33 (5): 1051-1059.
  • 2JOW T, WAGNER J B. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride[J]. Journal of the Electrochemical Society, 1979, 126 ( 11 ): 1963-1972.
  • 3MAIER J. Ionic conduction in space charge regions[J]. Progress inSolid State Chemistry, 1995, 23 (3): 171-263.
  • 4MAIER J. Nanoionics: Ion transport and electrochemical storage in confined systems[J]. Nature Materials, 2005, 4 ( 11 ).. 805-815.
  • 5ZHUKOVSKII Y F, BALAYA P, KOTOMIN E A, et al. Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations[J]. Physical Review Letters, 2006, 96 (5): doi: 10.1103/PhysRevLett.96.058302.
  • 6TULLER H L. Ionic conduction in nanocrystalline materials[J]. Solid Statelonics, 2000, 131 (1).. 143-157.
  • 7SCHOONMAN J. Nanostructured materials in solid state ionics[J]. Solid State lonics, 2000, 135 (1).. 5-19.
  • 8BALAYA P, JAMNIK J, FLEIG J, et al. Mesoscopic electrical conduction in nanocrystalline SrTiO3[J]. Applied Physics Letters, 2006, 88 (6): doi: 10.1063/1.2171798.
  • 9KIM S, MAIER J. On the conductivity mechanism of nanocrystalline ceria[J]. Journal of the Electrochemical Society, 2002, 149 (10): J73-J83.
  • 10GUO X, MAIER J. Grain boundary blocking effect in zirconia: A schottky barrier analysis[J]. Journal of the Electrochemical Society, 2001, 148 (3): E121-EI26.

同被引文献25

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部