摘要
The Multiprotein bridge factor 2 (MBF2) gene was first identified as a coactivator involved in BmFTZ-F 1-mediated activation of the Fushi tarazu gene. Herein, nine homologous genes of MBF2 gene are identified. Evolutionary analysis showed that this gene family is insect-specific and that the family members are closely related to response to pathogens (REPAT) genes. Tissue distribution analysis revealed that these genes could be expressed in a tissue-specific manner. Developmental profiles analysis showed that the MBF2 gene family members were highly expressed in the different stages. Analysis of the expression patterns of nine MBF2 family genes showed that Bacillus bombysepticus treatment induced the up-regulation of several MBF2 family genes, including MBF2-4, -7, -9, -8. Furthermore, we found the MBF2 family genes were modulated by starvation and the expression of these genes recovered upon re-feeding, except for MBF2-5, -9. These findings suggested roles for these proteins in insect defense against pathogens and nutrient metabolism, which has an important guiding significance for designing pest control strategies.
The Multiprotein bridge factor 2 (MBF2) gene was first identified as a coactivator involved in BmFTZ-F 1-mediated activation of the Fushi tarazu gene. Herein, nine homologous genes of MBF2 gene are identified. Evolutionary analysis showed that this gene family is insect-specific and that the family members are closely related to response to pathogens (REPAT) genes. Tissue distribution analysis revealed that these genes could be expressed in a tissue-specific manner. Developmental profiles analysis showed that the MBF2 gene family members were highly expressed in the different stages. Analysis of the expression patterns of nine MBF2 family genes showed that Bacillus bombysepticus treatment induced the up-regulation of several MBF2 family genes, including MBF2-4, -7, -9, -8. Furthermore, we found the MBF2 family genes were modulated by starvation and the expression of these genes recovered upon re-feeding, except for MBF2-5, -9. These findings suggested roles for these proteins in insect defense against pathogens and nutrient metabolism, which has an important guiding significance for designing pest control strategies.
基金
Acknowledgments This work was supported by grants from the National Basic Research Program of China (No. 2012CB114600) and the National Natural Science Foundation of China (No. 31272502 and No. 31530071i.
作者简介
These authors contributed equally to this work.These authors contributed equally to this work.Correspondence: Qing-You Xia, State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400716, China. Tel: +86 23 68250099; fax: +86 23 68251228; email: xiaqy@swu. edu.cn