期刊文献+

基于最小二乘支持向量机的应力强度因子预测模型

Prediction of Stress Intensity Factor by Least Squares Support Vector Machine
原文传递
导出
摘要 应力强度因子是表征材料断裂的重要参量,与应力大小,裂纹的形状和裂纹长度有关。对应力强度因子进行分析,基于最小二乘支持向量机原理,结合粒子群优化,建立以应力大小和裂纹长度作为输入值,应力强度因子为输出值的模型,从而对应力强度因子进行分析和预测。模型预测值与理论值进行分析比较,结果显示,基于最小二乘支持向量机结合粒子群优化算法建立的数学模型,模型拟合优度为0.994 9,可通过应力大小和裂纹长度预测应力强度因子,预测值与精确值的相对最大误差为0.186 4,可证明该模型的适用性与精确性。 The stress intensity factor (SIF) is known to be an important factor inducing the deterioration and consequently the breakage of workpiece, which is closely dependent on stress, shape and length of crack. In this work, the SIF was investigated. Based on least squares support vector machines (LS-SVM) modeling approaches coupled with particle swarm optimization (PSO) optimization strategy, efficient statistically predictive models were developed. Taking stress and length of crack as input parameters and SIF as output parameters, the results indicated that the PSO- LSSVM models are capable of capturing the complex nonlinear relationship between the input and output variables, coefficient of determination ( R2 ) values was 0. 9949. The SIF could be predicted by stress and length of crack, and the relative maximum predicting error was 0. 1864, which verified the reliability and validity of the proposed model.
作者 马清艳 张亚
出处 《机械设计与研究》 CSCD 北大核心 2016年第4期125-127,共3页 Machine Design And Research
基金 部级预研项目
作者简介 E-mail:maqingyan@nuc.edu.cn; 马清艳(1980-),女,讲师,博士研究生;主要研究方向:机械制造及其自动化,已发表论文8篇。
  • 相关文献

参考文献11

二级参考文献28

  • 1肖人彬,李洪杰,李仁旺.连杆曲线识别的进化方法[J].机械工程学报,2002,38(z1):38-42. 被引量:6
  • 2李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 3孔凡国,邹慧君,陈安适.一种新的轨迹机构综合方法[J].上海交通大学学报,1996,30(12):7-12. 被引量:2
  • 4张军峰,胡寿松.基于聚类和支持向量机的非线性时间序列故障预报[J].控制理论与应用,2007,24(1):64-68. 被引量:22
  • 5WIDODO A,YANG B S.Support vector machine in machine condition monitoring and fault diagnosis[J].Mechanical Systems and Signal Processing,2007,21:2560-2574.
  • 6WEN Y F,CAI C Z,LIU X H,et al.Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression[J].Corrosion Science,2009,51:349-355.
  • 7VAPNIK V N,LEVIN E,LE C Y.Measuring the VC-dimension of a learning machine[J]. Neural Computation,1994(6):851-876.
  • 8邓乃扬,田英杰.数据挖掘中的新方法—支持矢量机[M].北京:科学出版社,2005.
  • 9RAMESH R,MANNAN M A,POO A N.Error compensation in machine tools-a review:Part Ⅱ:Thermal errors[J].International Journal of Machine Tools and Manufacture,2000,40(9):1257-1284.
  • 10YANG Hong,NI Jun.Dynamic neural network modeling for nonlinear,non-stationary machine tool thermally induced error[J].International Journal of Machine Tools and Manufacture,2005,45(4-5):455-465.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部