期刊文献+

数据的多流形结构分析

Multi-manifold Structure Analysis of Data
原文传递
导出
摘要 建立了基于ALM和权值的LRR聚类改进模型,对高维数据进行分析,将其分为两个独立的子空间,并与传统k-means聚类模型进行对比,采用评价指标模型对聚类结果进行评价分析.提出的LRR聚类改进模型在正则项引入了权重系数w,可以更好地将扰动分开,求解结果及评价指标均有效地验证了其稳定性、精确度等性能均有所提升.建立了SMMC改进模型,对机器工件外部边缘轮廓进行分类.从求解结果可看出该模型非常适合用于处理混合多流形聚类问题,对于比较复杂的曲线有着很好的分类性能.按照数据预处理、数据建模分析、模型结果评价步骤,通过使用谱聚类分析和多流形学习方法,对所给出的高维数据进行分析和处理,并通过评价模型得出相应的评价指标,对数据的多流形结构进行了深入的研究和探讨. This paper establishes improved LRR clustering model based ALM and weights to analyze the high-dimensional data in order to divide them into two separate sub-space. Compared with the traditional k-means clustering model, using evaluation model for the analysis of clustering results. The improved LRR clustering model introduces weighting coefficient in the regularization term, which can better separate the disturbance. The results and evaluation can effectively verify that its stability, accuracy and other properties have been enhanced. This paper establishes improved SMMC model for the classification of outer edges in the machine workpiece contour. As can be seen from the results that model is well suited for the treatment of mixed multi-manifold clustering problem and also has a good classification performance for more complex curves. In this paper, according to data preprocessing, data modeling and analysis, model results evaluation step, by using spectral clustering analysis and multi-manifold learning method, analyze and process high dimensional data presented, then draw the appropriate evaluation through the evaluation model, finally carry out in-depth study and discussion for multi-manifold structure of data.
出处 《数学的实践与认识》 北大核心 2016年第14期200-207,共8页 Mathematics in Practice and Theory
关键词 谱聚类 稀疏子空间 多流形学习 评价指标 spectral clustering sparse subspace multi-manifold learning evaluation indicators
  • 相关文献

参考文献18

  • 1Basri R, and Jacobs D W. Lambertian reflectance and linear subspaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233.
  • 2Vidal R. Subspace clustering[J]. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 3Shi J, and Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions Pattern Analysis Machine Intelligence, 2000, 22(8): 888-905.
  • 4Liu G, Lin Z, Yah S, Sun J, Yu Y, and Ma Y. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
  • 5Elhamifar E, and Vidal R. Sparse subspace clustering: Algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
  • 6Wang Y, Jiang Y, Wu Y, and Zhou Z. Spectral clustering on multiple manifolds[J]. IEEE Transac- tions on Neural Networks, 2011, 22(7): 1149-1161.
  • 7Cheng B, Liu G, Wang J, Huang Z, and Yan S. Multi-task low rank affinity pursuit for image segmentation[M]. ICCV, 2011.
  • 8Basri R, and Jacobs D. Lambertian reflection and linear subspaces[J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003, 25(3): 218-233.
  • 9Basri R, and Jacobs D W. Photometric stereo with general, unknown lighting[J] IEEE Conf. Com- puter Vision and Pattern Recognition, 2001: 374-381.
  • 10张彬.基于聚类算法的RBF神经网络设计综述[J].微型机与应用,2012,31(12):1-3. 被引量:11

二级参考文献108

  • 1CHIU S L. Fuzzy model identification based on cluster es- timation[J]. Journal of Intelligent and Fuzzy System, 1994,2(3) : 1240-1245.
  • 2庞振,徐蔚鸿.一种基于改进K-means的RBF神经网络学习方法[J].(2011-07-14).[2012-01-20]:http://www.cnki.net/kcms/detail/11.2127.TP.20110714.1550.036.html.
  • 3Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 4Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 5Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 6Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 7Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.
  • 8Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671.
  • 9Yang A Y, Wright J, Ma Y, Sastry S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225.
  • 10Vidal R, Soatto S, Ma Y, Sastry S. An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003. 167-172.

共引文献122

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部