期刊文献+

异地分布式敏捷开发团队协作合作博弈研究 被引量:1

Study on Game Theory Research of Geographically Distributed Agile Software Team Coordination
在线阅读 下载PDF
导出
摘要 在分布式敏捷开发过程中,为了实现异地合作各方之间的快速响应与反馈,需要解决其敏捷协同协作问题。针对异地分布式敏捷协作开发过程,提出了其适应性团队协作的一种改进框架,该框架运用合作博弈理论,从核心、核仁、夏普利值分别展开。核心确定了异地分布式合作各方为稳定的分配集,核仁的分配结果实现较为困难,重点通过夏普利值分析进行了合作博弈夏普利值的分配,团队协作夏普利值相关数据表明,客户和本地团队对团队协作的边际贡献较大,而异地分布式团队的边际贡献较小。 In the process of distributed agile development , solving the problem of the agile collaboration is highly needed in order to achieve the offsite rapid response and feedback between all parties. For geographically distributed agile collaborative development process, we propose its improved framework of adaptive team collaboration. By em-ploying cooperative game theory, we elaborate our work from the core, nucleolus, shapley value respectively. Core identifies the stable distribution set of each party which is geographically distributed, and the distribution results of the nucleolus is more difficult. Through mainly focusing on the shapley value analysis, we conduct the distribution of the shapley value of cooperative game. Data reveals that the marginal contribution from the customer and the local team is the greatest while that of the geographically distributed team is the smallest.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2016年第4期714-719,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(71201124) 西北工业大学研究生创意创新种子基金(Z2016193)资助
关键词 异地分布式 敏捷开发 团队协作 博弈 geographically distributed agile development teamwork Game theory
作者简介 殷茗(1978-),女,西北工业大学副教授、博士,主要从事信息管理的研究。
  • 相关文献

参考文献2

二级参考文献46

  • 1杰西卡·利普耐克,杰弗里·斯坦普斯.虚拟团队管理[M].北京:经济管理出版社,2002..
  • 2Bomze I M.Dynamical aspects of evolutionary stability[J].Mathematik, 1990,110(3/4) : 189-206.
  • 3Cressman R.Evolutionary game theory with two groups of individuals[J].Games and Economic Behavior, 1995,11:237-253.
  • 4Maria S M.On the asymptotic convergence to mixed equilibria in 2×2 asymmetric games[J].International Journal of Game Theory, 1997,26 (4) : 549-559.
  • 5Ellison G.Basins of attraction,long-run stochastic stability, and the speed of step-by-step evolution[J].Review of Economic Studies, 2000,67:17-41.
  • 6Kobayashi J.Evolutionarily stable strategy in more than two player games[J].Sociologieal Theory and Method,2000,15:209-216.
  • 7Oechssler J,Riedel F.Evolutionary dynamics on infinite strategy spaces[J].Economic Theory,2001,17( 1 ) : 141-162.
  • 8Hofbauer J,Sorger G.A differential game approach to evolutionary equilibrium selection[J].International Journal of Game Theory Review, 2000,4 : 17-31.
  • 9Dominik K,Jacek M,Marcin Z.Stochastic stability in three-player games[J].Bulletin of Mathematical Biology,2005,67(6): 1195-1205.
  • 10Clemens C, Richmann T.Evolutionary dynamics in public good games[J].Computational Economics, 2006,28 (4) : 399-420.

共引文献26

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部