期刊文献+

应用非负矩阵分解的社交网络好友推荐 被引量:2

Friend Recommendation in Social Network Using Nonnegative Matrix Factorization
在线阅读 下载PDF
导出
摘要 现有好友推荐方法只利用用户关系或内容信息进行推荐,难以获得较好的推荐质量.针对该问题,在利用非负矩阵分解模型适合数据聚类以及数据约简的基础上,提出一种基于非负矩阵分解的好友推荐方法:FRNMF.该方法采用基于非负矩阵分解的用户聚类为核心的好友推荐框架,利用用户好友关系网络信息和内容信息分别进行用户聚类,然后基于聚类结果计算用户间的综合相似度并进行好友推荐;不仅可以综合集成利用用户关系和内容两类信息,而且具有线性时间复杂度,还可以解决数据稀疏引起的推荐质量下降问题.实验开发了FRNMF的原型系统,并在真实的新浪微博和学者网社交网络数据集进行对比实验,结果表明FRNMF比传统的好友推荐方法具有更好的推荐质量.此外,对用户关系和内容两类信息的权重参数设置进行实验分析,分析表明适当提高用户关系信息的权重对于提高好友推荐质量具有促进作用. Most of existing friend recommendation methods only utilize user friendship or content information, and hence they are hard to obtain better recommendation quality. Aiming at this problem, Friend Recommendation using Nonnegative Matrix Faetorization (FRNMF) for friend recommendation based on Nonnegative Matrix Factorization (NMF) is proposed, which is fit for data clustering and data reduction. FRNMF adopts user clusters as the core component of its framework. It firstly clusters users by utilizing user friendship network and user-generated content information respectively, and then calculates user pairwise similarities for recommendation based on the cluster results. It can use both user friendship and content information, and it has linear time complexity. FRNMF can alleviate the problem of data sparsity, which can result in the low recommendation quality. By developing protosystem of FRNMF and conducting comparative experiments on Weibo and Scholar social networks, the results show that our method performs better than traditional friend recommendation methods. Moreover, by experimental analysis, moderate increase of the weight of user friendship information can further improve the recommendation quality.
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期100-105,共6页 Journal of South China Normal University(Natural Science Edition)
基金 广东省科技计划项目(2016A030303058 2015A020209178) 广州市云计算安全与测评技术重点实验室开放基金(GZCSKL-1407) 国家级大学生创新创业训练计划项目(201511347005)
关键词 非负矩阵分解 社交网络 好友推荐 nonnegative matrix factorization social network friend recommendation
作者简介 通讯作者:贺超波,副教授,Email:hechaobo@foxmail.com.
  • 相关文献

参考文献16

  • 1中文互联网数据资讯中心.WeAreSocial:2015年全球移动&社交报告精华解读[EB/0L]. (2015-02-02)[2015 - 10 - 19 ]. http: // www. 199it. com/archives/326417.html.
  • 2贺超波,汤庸,陈国华,刘海,吴琳琳.面向大规模社交网络的潜在好友推荐方法[J].合肥工业大学学报(自然科学版),2013,36(4):420-424. 被引量:7
  • 3王玙,高琳.基于社交圈的在线社交网络朋友推荐算法[J].计算机学报,2014,37(4):801-808. 被引量:53
  • 4刘冬宁,刘艳,滕少华,朱海滨,梁路.基于角色协同的在线社交网络好友推荐机制[J].广西大学学报(自然科学版),2014,39(6):1316-1323. 被引量:3
  • 5AKCORA C G,CARMINATI B,FERRARI E. User simi-larities on social networks [ J] . Social Network Analysisand Mining, 2013,3(3) :475-495.
  • 6DONG Y X, TANG J, WU S, et al. Link prediction andrecommendation across heterogeneous social networks[ C]// Proceedings of the 12th International Conference onData Mining. Chicago: IEEE, 2012: 181-190.
  • 7AGARWAL V, BHARADWAJ K K. A collaborative filte-ring framework for friends recommendation in social net-works based on interaction intensity and adaptive usersimilarity [ J ]. Social Network Analysis and Mining,2013, 3(3):359-379.
  • 8LEE D D, SEUNG H S. Learning the parts of objects bynon-negative matrix factorization [J]. Nature, 1999, 401(10):788-791.
  • 9LEE D D, SEUNG H S. Algorithms for non-negative ma-trix factorization[C] //Proceedings of 2000 Annual Con-ference on Neural Information Processing Systems. Cam-bridge, MA: MIT Press, 2000:556-562.
  • 10LIU H W, LI X L, ZHENG X Y. Solving non-negativematrix factorization by alternating least squares with amodified strategy [ J ] . Data Mining and Knowledge Dis-covery, 2013, 26(3):435-451.

二级参考文献97

  • 1Chatterjee P, Hoffman DL, Novak TP. Modeling the clickstream: Implications for Web-based advertising efforts. Marketing Science, 2003,22(4):520-541. [doi: 10.1287/mksc.22.4.520.24906].
  • 2Wang C, Zhang P, Choi R, D'Eredita M. Understanding consumers' attitude toward advertising. In: Proc. of the 8th Americas Conf. on Information System. 2002. 1143-1148.
  • 3Ribeiro-Neto B, Cristo M, Golgher PB, Moura ES. Impedance coupling in content-targeted advertising. In: Proe. of the SIGIR 2605. New York: ACM Press, 2005. 496-503. [doi: 10.1145/1076034.1076119].
  • 4Lacerda A, Cristo M, Goncalves MA, Fan WG, Ziviani N, Ribeiro-Neto B. Learning to advertise. In: Proc. of the SIGIR 2006. New York: ACM Press, 2006. 549-556. [doi: 10.1145/1148170.1148265].
  • 5Broder AZ, Fontoura M, Josifovski V, Riedel L. A semantic approach to contextual advertising. In: Proc. of the SIGIR. 2007. 559-566. [doi: 10.1145/1277741.1277837].
  • 6Chakrabarti D, Agarwal D, Josifovski V. Contextual advertising by combining relevance with click feedback. In: Proc. of the 17th Int'l Con1: on World Wide Web (WWW 2008). Beijing: ACM Press, 2008.417-426. [doi: 10.1145/1367497.1367554].
  • 7Yih W, Goodman J, Carvalho VR. Finding advertising keywords on Web pages. In: Proc. of the 15th Int'l Conf. on World Wide Web (WWW 2006). New York: ACM Press, 2006. 213-222. [doi: 10.1145/1135777.1135813].
  • 8Belkin N, Croft B. Information filtering and information retrieval. Communications of the ACM, 1992,35(12):29-37. [doi: 10.1145/138859.138861].
  • 9Balabanovic M, Shoham Y. Fab: Content-based collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. [doi: 10.1145/245108.245124].
  • 10Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In: Proc. of the CSCW'94, 1994. [doi: 10.1145/192844.192905].

共引文献175

同被引文献5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部