期刊文献+

基于Kolmogrov-Smirnov检验和LS-SVM的机械设备故障预测 被引量:12

Prognostics of mechanical equipment based on Kolmogrov-Smirnov test and LS-SVM
在线阅读 下载PDF
导出
摘要 提出一种基于Kolmogrov-Smirnov检验和LS-SVM的机械设备故障预测新方法。基于K-S检验计算参考样本与正常状态样本经验分布函数的相似度,确定2个样本是否属于同一分布,即设备是否处于相同的运行状态,实现对设备运行退化状态进行识别,并采用当前退化状态与正常状态的K-S距离作为性能评估量化指标,在此基础上给出基于K-S检验和LS-SVM的设备故障预测系统框架。研究结果表明:该方法可以有效地对设备进行退化评估和故障预测,计算效率高,具有较好的适用性。 A novel performance degradation assessment method based on K-S test was presented. The similarity between empirical distribution function of normal condition sample and that of test sample was calculated by using Kolmogrov-Smirnov test, and then whether the two samples came from the same distribution, i.e., whether the equipment in the same state or not could be judged, so the degradation statements could be identified. The K-S distance between current state and normal state was calculated as the performance index to assess the degradation. According to that result, the prognostic system framework based on K-S test and LS-SVM was given. The result shows that the proposed method can realize the performance degradation assessment and prognostics effectively and prove to be adaptive.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第6期1924-1929,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51405246) 江苏省自然科学基金资助项目(BK2011391)~~
关键词 故障预测 退化评估 K-S检验 最小二乘支持向量机 prognostics degradation assessment K-S test least squares support vector machine
作者简介 通信作者:花国然,博士,教授,从事先进制造技术研究:E-mail:huagr@ntu.edu.cn
  • 相关文献

参考文献14

  • 1ZENG S K, MICHAEL G P, WU J. Status and perspectives of prognostics and health management technology[J]. 航空学报,2005,26(5):626-632.
  • 2DJURDJANOVIC D, LEE J, NI J. Watchdog Agent: aninfotronics-based prognostics approach for product performancedegradation assessment and prediction[J]. Advanced EngineeringInformatics, 2003, 17(3/4): 109-125.
  • 3ZIO E. Reliability engineering: old problems and newchallenges[J]. Reliability Engineering and System Safety, 2009,94(2): 125-141.
  • 4王国彪,何正嘉,陈雪峰,赖一楠.机械故障诊断基础研究“何去何从”[J].机械工程学报,2013,49(1):63-72. 被引量:287
  • 5HUANG R Q, XI L F,LI X L, et al. Residual life predictions forball bearings based on self-organizing map and back propagationneural network methods[J]. Mechanical Systems and SignalProcessing 2007,21(1): 193-207.
  • 6陈保家,陈雪峰,何正嘉,李兵.利用运行状态信息的机床刀具可靠性预测方法[J].西安交通大学学报,2010,44(9):74-77. 被引量:12
  • 7GHASEMI A, YACOUT S, OUALI M S. Evaluating thereliability function and the mean residual life for equipment withunobservable states [J]. IEEE Transactions on Reliability, 2010,59(1): 45-54.
  • 8PAN Yuna, CHEN Jin, GUO Lei, Robust bearing performancedegradation assessment method based on improved waveletpacket-support vector data description[J]. Mechanical Systemsand Signal Processing, 2009, 23(3): 669-681.
  • 9LUO Hui, WANG Youren, CUI Jiang. A SVDD approach offuzzy classification for analog circuit fault diagnosis with FWTas preprocessor[J]. Expert Systems with Applications, 2011,38(8): 10554-10561.
  • 10LIU Qinming, DONG Ming, PENG Ying. A novel method foronline health prognosis of equipment based on hiddensemi-Markov model using sequential Monte Carlo methods[J].Mechanical Systems and Signal Processing, 2012,32: 331-348.

二级参考文献80

共引文献314

同被引文献87

引证文献12

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部