期刊文献+

融合语义知识库的流程匹配算法 被引量:1

Process matching method based on semantic repository
在线阅读 下载PDF
导出
摘要 为在流程相似度计算中加入流程间深层语义关联的度量,同时在流程节点较多的情况下,实现流程匹配算法在寻优时间复杂度和相似度匹配输出值两方面的综合优化,提出一种面向流程的遗传匹配算法,将遗传算法引入并应用在流程语义和结构的相似度计算寻优过程中.确定遗传算法的参数编码方式,并利用贪婪算法进行初始种群的设置,定义各个遗传算子,提出有效的简化策略,解决了流程节点较多时流程匹配过程寻优问题.实验研究表明,在流程节点数较多时,本文算法在寻优时间花费和相似度值两方面的折中优化性能明显优于其他两种算法.将遗传算法应用到流程的相似度计算及其寻优过程,可以有效地控制时间复杂度并保证较好的匹配输出结果. To calculate the process similarity with consideration of deep semantics correlation between business processes, and to optimize the time complexity and matching result when the node number of business process becomes larger and larger, a process matching method based on GA ( Genetic Algorithm) is put forward. This method is applied in similarity calculation for both process semantic and process structure, in which encoding is determined, and greedy algorithm is utilized to initialize the population of GA. By defining genetic operations and adopting some strategies for simplifying, the optimization of business process matching with large node number is fulfilled. As is expected, the experiments prove that the overall performance of algorithm proposed in this paper is better than the others that exist, especially when the count of process nodes grows to a large number. So it is concluded that the application of GA in business process similarity calculation and corresponding process optimization can effectively control the time complexity, meanwhile ensure the quality of the matching result, which shows a good practicability.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第7期150-155,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(51375395)
关键词 业务流程 文本相似度 语义知识库 匹配相似度 遗传算法 business process text similarity semantic repository match similarity genetic algorithm
作者简介 常关羽(1985-),男,博士研究生;通信作者:常关羽,dengxiao@mail.nwpu.edu.cn 杨海成(1959-),男,教授,博士生导师
  • 相关文献

参考文献19

  • 1JIN T, WANG J, LA ROSA M, et al. Efficient querying of large process model repositories [J]. Computers in Industry,2013, 64(1): 41-49.
  • 2WANG P, LIU H. Assessing sentence similarity using wordnet based word similLarity [J]. Journal of Software, 2013, 8(6) : 1451-1458.
  • 3LI H, TIAN Y, CAI Q. Iraprovement of semantic similarity algorithm based on WoldNet [C]// 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA). Beijing : IEEE, 2011 : 564-567.
  • 4郭永利,卢颖颖.基于Lucene对文件全文检索的研究与应用[J].微型电脑应用,2014(1):51-54. 被引量:8
  • 5李永春,丁华福.Lucene的全文检索的研究与应用[J].计算机技术与发展,2010,20(2):12-15. 被引量:55
  • 6付永贵.一种改进的余弦向量度量法文本检索模型[J].图书情报工作,2011,55(19):115-119. 被引量:2
  • 7BERRETII S, DELBIMBO A, VICARIO E. Efficient match- ing and indexing of graph models in content-based retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(10): 1089-1105.
  • 8COLOMOPALACIOS R, GOMEZBERBIS J M, GARCIAC- RESPO A, et al. SeMatching: using semantics to perform pair matching in mentoring processes [C]//2nd World Summit on the Knowledge Society. Chania: Springer Verlag, 2009 : 137-146.
  • 9DIJKMAN R, DUMAS M, GARCIABANUELOS L. Graph matching algorithms for business process model similarity search [C]//7th International Conference on Business Process Management. Utm : Springer Verlag, 2009:48-63.
  • 10THANUJA M K, MALA C. A search tool using genetic algorithm [M]//Information Technology and Mobile Communication. Chania: Springer, 2011 : 138-143.

二级参考文献49

共引文献139

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部