期刊文献+

基于相空间重构和进化高斯过程的短期风速预测 被引量:1

Short-term Wind Speed Forecasting Based on Phase-space Reconstruction and Evolutionary Gaussian Process Model
在线阅读 下载PDF
导出
摘要 提出一种基于相空间重构和进化高斯过程的短期风速预测方法。首先,运用自相关法和假近邻法分别得出原始风速时间序列的延迟时间和嵌入维数,实现混沌风速时间序列的相空间重构;然后,运用进化高斯过程回归模型进行建模,通过高斯过程模型确定输入量和输出量之间的关系,并用改进粒子群算法求取最优超参数。根据某实测风速数据进行了风速预测,结果表明本文所提出的方法能有效提高风速预测精度。 A short-term wind speed forecasting method based on phase-space reconstruction and evolutionary Gaussian process model is proposed in this paper .Firstly, the autocorrelation method and false nearest neighbor method are applied to calculate the delay time and embedding dimension of the wind speed time series , which are used to accomplish the phase-space reconstruction of the chaotic wind speed time series .Secondly, the evolutionary Gaussian process model , which combines Gaussian process with evolutionary algorithm , is used to forcast the wind speed .This model uses Gaussian process model to determine the relationship between the input and output variables , and the improved PSO algorithm to optimize the hyper parameters .The prediction results show that the proposed method can improve the prediction accuracy .
作者 常纯 李德胜
出处 《计算机与现代化》 2016年第7期33-36,43,共5页 Computer and Modernization
基金 安徽省自然科学基金资助项目(1308085QF103) 安徽省教育厅自然科学基金资助项目(KJ2013B073)
关键词 风速预测 短期 相空间重构 进化高斯过程 改进粒子群算法 wind speed forecast short-term phase-space reconstruction evolutionary Gaussian process improved PSO algo-rithm
作者简介 常纯(1989-),女,安徽安庆人,苏州大学艺术学院助教,硕士,研究方向:人工智能与模式识别,风速及风功率预测。
  • 相关文献

参考文献14

  • 1李晶,宋家骅,王伟胜.大型变速恒频风力发电机组建模与仿真[J].中国电机工程学报,2004,24(6):100-105. 被引量:274
  • 2Bhaskar Melam, Jain Amit, Srinath Venkata. Wind speed forecasting: Present status [ C ]//2010 International Confer- ence on Power System Technology. Hangzhou, China, 2010:1-6.
  • 3Fabbri A, Roman T G S, Abbad J R, et al. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market[ J]. IEEE Trans. on Power Systems, 2005,20( 3 ) : 1440-1446.
  • 4Gao Shan, He Yu, Chen Hao. Wind speed forecast for wind farms based on ARMA-ARCH model [ C ]// International Conference on Sustainable Power Generation and Supply. Nanjing, China, 2009 : 1-4.
  • 5Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms using spatial correlation [J]. IEEE Trans. Energy Conversion, 2004,19(6) :352- 361.
  • 6朱亚,孙冬梅,何响,刘曼曼.基于EMD-GRNN和概率统计结合的短期风速预测[J].计算机科学,2014,41(S1):72-75. 被引量:5
  • 7潘学萍,史宇伟,张弛.双加权最小二乘支持向量机的短期风速预测[J].电力系统及其自动化学报,2014,26(1):13-17. 被引量:11
  • 8Seeger M. Gaussian processes for machine learning [ J ]. International Journal of Neural System, 2004,14 ( 2 ) : 69- 106.
  • 9Rasmussen C E, Williams C K I. Gaussian Processes for Machine Learning[ M]. The MIT Press, 2006:7-31.
  • 10孙斌,姚海涛,刘婷.基于高斯过程回归的短期风速预测[J].中国电机工程学报,2012,32(29):104-109. 被引量:96

二级参考文献81

  • 1孙克辉,谈国强,盛利元,张泰山.Lyapunov指数计算算法的设计与实现[J].计算机工程与应用,2004,40(35):12-14. 被引量:14
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:585
  • 3雷绍兰,孙才新,周湶,张晓星.电力短期负荷的多变量时间序列线性回归预测方法研究[J].中国电机工程学报,2006,26(2):25-29. 被引量:94
  • 4谷子,唐巍.电力短期负荷时间序列混沌相空间重构参数优选法[J].中国电机工程学报,2006,26(14):18-23. 被引量:22
  • 5Pinson P, Kariniotakis G N. Wind power forecasting using fuzzy neural networks enhanced with on-line prediction risk assessment[J].Power Tech Conference Proceedings 2003 IEEE Bologna, 2003, 2:8.
  • 6Damousis I G, Alexiadis M C, Theocharis J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation[J] IEEE Transaction on Energy Conversion, 2004, 19(2) 352-361.
  • 7Damousis I G, Dokopoulos P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms[C]. Power Industry Computer Applications, 2001:63-69.
  • 8Wang P, Billinton R. Time-sequential simulation technique for rural distribution system reliability cost/worth evaluation including wind generation as alternative supply[J], IEE Proc. Generation, Trans- mission and Distribution, 2001, 148(4): 355-360.
  • 9Billinton R, Guang Bai. Adequacy evaluation of generation systems including wind energy[C]. IEEE Canadian Conference on Electrical and Computer Engineering, 2002,1: 24-29.
  • 10Bech J, Hansen A D, Janosi L, et al. Wind farm modelling for power quality[J].Industrial Electronics Society, 2001,3(29): 1959-1964.

共引文献426

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部