期刊文献+

具有Levy噪声的随机Holling-Tanner模型

Stochastic Holling-Tanner Model with LevyNoise
在线阅读 下载PDF
导出
摘要 考虑了噪声对随机Holling-Tanner模型的影响.这种噪声可以理解为海啸、地震、大规模的传染病等产生的突发的且随机性很强的干扰.首先,证明了该模型的全局正解的存在唯一性.然后,结合随机比较定理和鞅论等知识找到了种群在时间均值意义下持续存在和随机灭亡的充分条件.这些结论说明Levy噪声对种群的持久性和灭绝性具有显著性的影响,甚至可以使种群的长期动力学行为发生根本性改变.最后,通过数值模拟直观地验证了Levy噪声对种群的影响. The dynamics of stochastic Holling-Tanner model with noises were discussed.The noises can be considered as the flood,tsunami,earthquake,drought,large-scale infectious disease,volcanic eruptions and climate warming etc,and they can produce sudden,discrete and large stochastic perturbations.It is shown that the stochastic Holling-Tanner model with noises admits a unique positive global solution starting from the positive initial value.Then,sufficient conditions of the persistence in the meaning of time average and the extinction of the model were obtained by making use of the stochastic comparison theorem and martingale theory etc.The above conclusions show that Levy noises have significant effects on the persistence and extinction of the population,which can even make the long-time dynamic behavior of the population model change fundamentally.Numerical simulations were carried out to illustrate the influence of Levy noises on the population.
出处 《上海理工大学学报》 CAS 北大核心 2016年第3期245-254,共10页 Journal of University of Shanghai For Science and Technology
关键词 Holling-Tanner模型 Levy噪声 持续 绝灭 Holling-Tanner model Levy noise persistence extinction
作者简介 周艳丽(1976-),女,副教授.研究方向:生物数字.E—mail:zhouyanli—math@163.com
  • 相关文献

参考文献20

  • 1MAO X R, MARION G, RENSHAW E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Processes and Their Applications, 2002,97(1) :95 - 110.
  • 2MAO X R, SABANIS S, RENSHAW E. Asymptoticbehaviour of the stochastic Lotka-Volterra modelFJ]. Journal of Mathematical Analysis and Applications, 2003,287(1) : 141 - 156.
  • 3BAHAR A, MAO X R. Stochastic delay Lotka-Volterra model[ J ]. Journal of Mathematical Analysis and Applications, 2004,292 (2) .. 364 - 380.
  • 4MAO X R. Delay population dynamics and environmentalnoise [J]. Stochastics and Dynamics, 2005, 5 ( 2 ) .. 149- 162.
  • 5MAO X R,YUAN C G, ZOU J Z. Stochastic differential delay equations of population dynamics[J]. Journal of Mathematical Analysis and Applications, 2005,304(1) .. 296 - 320.
  • 6DUN H, SAM V H. Dynamics of a Stochastic Lotka- Volterra model perturbed by white noise[J]. Journal of Mathematical Analysis and Applications, 2006,324 (1) .. 82 - 97.
  • 7JI C Y,JIANG D Q, SHI N Z. Analysis of a predator- prey model with modified Leslie-Gower and Holling- type II schemes with stochastic perturbation [J]. Journal of Mathematical Analysis and Applications, 2009,359(2) ..482 - 498.
  • 8JI C Y,JIANG D Q, LI X Y. Qualitative analysis of a stochastic ratio-dependent predator-prey system[J]. Journal of Computational and Applied Mathematics, 2011,235(5) :1326 - 1341.
  • 9JI C Y,JIANG D Q. Dynamics of a stochastic density dependent predator-prey system with Beddington- DeAngelis functional response [ J] . Journal of Mathematical Analysis and Applications, 2011,381 (1) .. 441 - 453.
  • 10J! C Y,JIANG D Q, SHIN Z. A note on a predator-prey model with modified Leslie-Cower and Holling-type H schemes with stochastic perturbation[J]. Journal of Mathematical Analysis and Applications, 2011,377 (1) .. 435 - 440.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部