期刊文献+

复值度量空间上具有A-隐式收缩的映射族的不动点与公共不动点 被引量:3

Fixed Points and Common Fixed Points of Mappings with A-Implicit Contractions on Complex Valued Metric Spaces
在线阅读 下载PDF
导出
摘要 通过在复值度量空间上引进复函数类A并构造收敛序列,证明了该序列的极限是满足A-隐式收缩条件的映射的唯一不动点,并给出具有两个复值度量的非空集合上满足A-隐式收缩条件的两个映射的公共不动点存在定理. By introducing a class of complex functions A and constructing convergent sequences on complex valued metric spaces, we proved that the limits of the given sequences are the unique fixed point of the mappings satisfying a d-implicit contractive condition, and gave the existence theorems of common fixed points for two mappings satisfying a d-implicit contractive condition on a nonempty set with two complex valued metrics.
机构地区 延边大学理学院
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2016年第4期743-747,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11361064)
关键词 复值度量空间 公共不动点 A-隐式收缩 complex valued metric space common fixed point A-implicit contraction
作者简介 石仁淑(1960-),女,朝鲜族,副教授,从事不动点理论的研究,E—mail:shirenshu@ybu.edu.cn. 朴勇杰(1962-),男,朝鲜族,博士,教授,从事非线性分析和不动点理论的研究,E-mail:sxpyj@ybu.edu.cn.
  • 相关文献

参考文献17

  • 1HUANG Longguang, ZHANG Xian. Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings [J]. J Math Anal Appl, 2007, 332(2): 1468-1476.
  • 2Beg I, Azam A, Arshad M. Common Fixed Points for Maps on Topological Vector Space Valued Cone Metric Spaces [J/OL]. Inter J Math Math Sci, 2009-12-13. doi: 10. 1155/2009/560264.
  • 3Azam A, Fisher B, Khan M. Common Fixed Point Theorems in Complex Valued Metric Spaces [J]. Numer Funt Anal Optim, 2011, 32(3): 243-353.
  • 4Sintunavarat W, Kumam P. Generalized Common Fixed Point Theorems in Complex Valued Metric Spaces and Applications [J/OL]. Journal of Inequalities and Applications, 2012-04-13. doi: 10. 1186/1029-242X-2012-84.
  • 5Rouzkard F, Imdad M. Some Common Fixed Point Theorems on Complex Valued Metric Spaces[J]. Computers and Mathematics with Applications, 2012, 64(6): 1866-1874.
  • 6Sitthikul K, Saejung S. Some Fixed Point Theorems in Complex Valued Metric Spaces [J/OL]. Fixed Point Theory and Applications, 2012-10-24. doi. 10. 1186/1687-1812-2012-189.
  • 7Bhatt S, Chaukiyal S, Dimri R C. Common Fixed Point of Mappings Satisfying Rational Inequality in Complex Valued Metric Space[J]. Int J Pure Appl Math, 2011, 73(2) : 159-164.
  • 8Kang S M, Kumar M, Kumar P, et al. Coupled Fixed Point Theorem in Complex Valued Metric Spaces [J]. Int J Math Anal, 2013, 7(46): 2269-2277.
  • 9Singh D, Chauhan O P, Singh N, et al. Common Fixed Point Theorems in Complex Valued b-Metric Spaces [J]. J Math Comput Sci, 2015, 5(3): 412-429.
  • 10严今石,朴勇杰,南华.复值度量空间上Banach收缩原理和I-膨胀映射的不动点定理[J].云南大学学报(自然科学版),2014,36(2):162-167. 被引量:2

二级参考文献12

  • 1HUANG L G,ZHANG X. Cone metric spaces and fixed point theorems of contractive mappings[J]. J Math Anal Appl,2007,332(2):1468- 1476.
  • 2BEG I,AZAM A,ARSHAD M. Common fixed points for maps on topological vector space valued cone metric spaces[J]. InterJ Math and Math Sci,2009,10: 1155,ID 560264.
  • 3PIAO Y J, PIAO D Z. Common fixed points for quasi - Lipschitz type mappings on TVS - valued cone metric spaces [J]. J SysSci & Math Scis,2012,32(2) :206- 214.
  • 4PIAO Y J. On almost iixed point theorems and fixed point theorems on topological spaces [J]. Journal of Yunnan University :Natural Sciences Edition,2010,32 ( 5) :497- 502.
  • 5AZAM A, FISHER B, KHAN M. Common fixed point theroems in complex valued metric spaces [J] . Numer Funt Anal Optim,2011,32(3):243-353.
  • 6SINTUNAVARAT W,KUMAM P. Generalized common fixed point theorems in complex valued metric spaces and application[J]. J of Inequalities and Applications,2012,84,12.
  • 7王尚志,李伯渝,高智民.膨胀算子及其不动点定理[J].数学进展,1982,11(2):149- 153.
  • 8WANG S Z,LI B Y,GA0 Z M. Expansive mappings and fixed point theorems[J]. Advances in Mathematics, 1982,11(2):149- 153.
  • 9BANACH A. Sur les operations dans les ensembles abstraist et leur applications aux Equations int6grales[J]. Fund Math,1922,3:133- 181.
  • 10ROUZKARD F,IMDAD M. Some common fixed point theroems on complex valued metric spaces[J]. Computers andMath-ematics with Applications ,2012,64:1 866- 1 874.

共引文献1

同被引文献4

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部