期刊文献+

Bloch流动方程在分析磁共振血流信号中的应用 被引量:1

Application of Bloch Flow Equation in Analysis of Blood Flow in Blood Vessels
在线阅读 下载PDF
导出
摘要 磁共振成像理论研究中,Bloch方程常用来求解自旋核的动力学行为.对于流动质子情况磁共振信号的描述则可以利用流动Bloch方程.本文在具体的物理模型中,利用Bloch流动方程,分析了血液的流速及不同的射频场条件下,磁共振信号的变化.结果显示,相同条件下,质子流速较快时会减弱信号,而在非线性的射频场条件下,磁共振信号会减弱.理解不同条件下磁共振信号的变化,对于磁共振成像技术的研究和改进提供了理论参考. Bloch equation is used to solve the dynamics behavior of nucleus in magnetic field, and the physics mechanisms of blood flow can be described by Bloch flow equation. We discussed the influence of MR(Magnetic Resonance) signal under specified conditions with different parameters such as blood flow velocity and RF(Radio Frequency) field. It showed that high velocity and nonlinear RF filed will weaken the signal. Understanding change of MR signal under a variety of conditions will help to better develop MRI(Magnetic Resonance Imaging) technique and provide theoretical reference for MRI.
作者 苏晋 袁小燕
出处 《湖南理工学院学报(自然科学版)》 CAS 2016年第2期58-61,共4页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
关键词 磁共振成像 BLOCH方程 磁共振信号 血液流动 magnetic resonance imaging Bloch equation MR signal blood flow
作者简介 苏晋(1980-),男,山西长治人,硕士,长治医学院基础医学院讲师.主要研究方向:理论物理,医学影像物理
  • 相关文献

参考文献2

二级参考文献27

  • 1Basser P J, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J, 1994, 66(1):259-267.
  • 2Hahn E. Spin echoes. Phys Rev, 1950, 80:580-594.
  • 3Carr E, Purcell E. Effects of diffusion on free precession in nuclear magnetic resonance experimeols. Phys Rev, 1954, 94: 630-638.
  • 4Torrey HC. Bloch equations with diffusion terms. Phys Rev, 1956, 104: 563-566.
  • 5Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys, 1965, 42:288-292.
  • 6Tanner J, Stejskal E. Restricted selfdiffusion of protons in colloidal systems by the pulsed-gradient, spin echo method. J Chem Phys, 1968, 49:1768-1777.
  • 7Nicholson C, Phillips JM. Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol, 1981,321:225-257.
  • 8Hrabe J, Hrabetova S, Segeth K. A model of effective diffusion and tortuosity in the extracellular space of the brain. Biophys J, 2004, 87(3):1606-1617.
  • 9Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations and eigenvectors. Part A. Concepts Magn Reson, 2006, 28:101 - 122.
  • 10Kingsley PB. Introduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion-weighting factors and gradient encoding schemes. Part A. Concepts Magn Reson, 2006, 28A: 123-154.

共引文献1

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部