期刊文献+

一种肩颈部肌电信号识别的智能轮椅控制方法 被引量:6

A Control Method for Intelligent Wheelchair Based on Neck-Shoulder Electromyography Recognition
在线阅读 下载PDF
导出
摘要 为了实现利用肌电信号识别的智能轮椅系统控制,提出一种基于空域相关滤波的小波熵和近似熵特征提取与分类方法.通过分布在人体肩颈部的电极采集动作并产生多通道表面肌电信号,采用阈值比较与移动平均的数据分段方法确定活动段的起点和终点,在小波变换尺度间相关滤波的基础上提取活动段数据的小波熵和近似熵特征,设计具有二叉树结构的孪生支持向量机多类分类器,以完成5种动作模式的识别,并在预设的实验轨迹上对智能轮椅进行测试.结果表明,所提出的方法在人体头部左、右转以及双肩上提和左、右肩上提等动作模式下对肌电信号的识别率均达到88.75%. To realize the control of an intelligent wheelchair system based on electromyography(EMG),a novel feature extraction of wavelet entropy and approximate entropy and classification method was proposed based on spatial correlation filtering.First,multi-channel surface EMG signals were collected from the electrodes placed on shoulder or neck muscles.Secondly,the starting and ending points of each segment were determined by the data segmentation technique of threshold comparison and moving average.Then,the features of wavelet entropy and approximate entropy were extracted from each segment based on inter-scale dependency filtering by wavelet transform.Finally,a multi-classifier with binary tree structure was designed for twin support vector machine,and applied to recognize five movement patterns tested by driving an intelligent wheelchair on the designed trajectory.The results show that the patterns of different motion modes,including left and right turning of head as well as left-,right-and both-shoulders elevation,are discriminated effectively with recognition rates greater than 88.75%.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第6期949-956,962,共9页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(61201302 61372023 61201300) 浙江省自然科学基金项目(LY15F010009)资助
关键词 智能轮椅 肌电信号 小波熵 近似熵 孪生支持向量机 intelligent wheelchair electromyography(EMG)signal wavelet entropy approximate entropy twin support vector machine
作者简介 佘青山(1980-),男,湖北省荆州市人,博士,副教授,主要从事生物信息处理与分析、模式识别及机器学习等研究.电话(Tel.):0571-86919130;E-mail:qsshe@hdu.edu.cn.
  • 相关文献

参考文献16

  • 1TURK M. Multimodal interaction: A review [J]. Pattern Recognition Letters, 2014, 36 ( 15 ) : 189-195.
  • 2XUX, ZHANGY, LUOY, etal. Robustbio-signal based control of an intelligent wheelchair [J]. Robot- ics, 2013, 2(4):187-197.
  • 3RECHY-RAMIRE E J, HUH S. A flexible bio sig- nal based HMI for hands-free control of an electric powered wheelchair [J]. International Journal of Ar- tificial Life Research, 2014, 4(1): 59-76.
  • 4YOUNG A J, SMITH L H, ROUSE E J, et al. Classification of simultaneous movements using sur- face EMG pattern recognition [J]. 1EEE Transactions on Biomedical Engineering, 2013, 60(5): 1250 1258.
  • 5张启忠,席旭刚,马玉良,罗志增,佘青山.基于表面肌电信号的手腕动作模式识别[J].中国生物医学工程学报,2013,32(3):257-265. 被引量:19
  • 6BIEN Z, CHUNG M J, CHANG P H, etal. Inte- gration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units [J ]. Autonomous Robots, Springer Netherlands, 2004, 16(2): 165-191.
  • 7MOON I, LEE M, CHU J, et al. Wearable EMG- based HCI for electric-powered wheelchair users with motor disabilities [C] // Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005:2660 2665.
  • 8CHO1 K, SAT() M, KOIKE Y. A new human-cen- tered wheelchair system controlled by the EMG signal [C] // Proceedings of International Joint Conference on Neural Networks. Vancouver, Canada: IEEE, 2006: 4664 4671.
  • 9FELZER T, STRAH B, NORDMANN R, et al. Alternative wheelchair control involving intentional muscle contractions [J]. International Journal on Ar- tificial Intelligence Tools, 2009, 18(3) : 439-465.
  • 10WEI L, HUH S, YUAN K. Use of forehead bio- signals for controlling an intelligent wheelchair [C]// Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand: IEEE, 2008: 108-113.

二级参考文献28

  • 1郭忠武,丁海曙,王广志,丁辉.基于运动学和动力学参数的步态识别研究[J].生物医学工程学杂志,2005,22(1):1-4. 被引量:7
  • 2金德闻,杨建坤,张瑞红,王人成,张济川.Terrain Identification for Prosthetic Knees Based on Electromyographic Signal Features[J].Tsinghua Science and Technology,2006,11(1):74-79. 被引量:5
  • 3李仲宁,罗志增.基于小波变换的空域相关法在肌电信号中的应用[J].电子学报,2007,35(7):1414-1418. 被引量:31
  • 4Li Guanlin, Li Yaonan, Yu Long, et al. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectfic prostheses [ J]. Ann Biomed Eng, 2011, 39(6) : 1779 - 1787.
  • 5Smith LH, Hargrove LJ, Lock BA, et al. Determining the optimal window length for pattern recognition-based myoelectric control: Balancing the competing effects of classification error and controller delay [ J]. IEEE Trans Neural Syst Rehabil Eng, 2011, 19(2): 186 -192.
  • 6Hahne JM, Graimann B, Muller KR. Spatial Filtering for Robust Myoelectric Control [ J]. IEEE Trans Biomed Eng, 2012, 59 (5) : 1436 -1443.
  • 7Khushaba RN, Kodagoda S, Takrufi M, et al. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals[ J 3- Expert Syst Appl, 2012, 39 (12) : 10731 - 10738.
  • 8Gini G, Arvetti M, Somlai I, et al. Acquisition and analysis of EMG signals to recognize multiple hand movements for prosthetic applications[ J ]. Appl Bion Biomechan, 2012, 9 ( 2 ) : 145 - 155.
  • 9Li Guanlin, Schuhz AE, Kuiken TA. Quantifying patternrecognition-based myoelectric control of multifunctional transradial prostheses[ J]. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(2) : 185 - 192.
  • 10Losier Y, Englehart K, Hudgins B. Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic- limb control using dual-task paradigm [ J]. J Rehabil Res Dev, 2011, 48 : 669 - 678.

共引文献35

同被引文献45

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部