期刊文献+

基于粒子群优化的混合宇宙大爆炸算法 被引量:3

Hybrid Big Bang-Big Crunch Algorithm Based on Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 宇宙大爆炸算法(Big Bang-Big Crunch,BB-BC)思想来源于宇宙大爆炸和大收缩理论.针对其在高维函数的寻优过程中,随迭代次数增加,爆炸生成的碎片解收缩速度慢,多样性快速减弱,质量变差,容易陷入局部最优解的缺点,提出一种混合型BB-BC算法(HBB-BC).首先,将质心代入当代解中作为奇点解进行改进,提高算法收缩速度;其次,结合粒子群优化的路径优化,提高碎片解的质量;最后,引入宇宙大撕裂理论增加大爆炸阶段碎片解的多样性和跳出局部最优解的能力.通过9个新型测试函数进行测试,测试结果显示,HBB-BC算法在高维函数的寻优性能上更优于BB-BC算法和另一种改进的均匀大爆炸混沌大收缩(UBB-CBC)算法. The Big Bang-Big Crunch ( BB-BC ) algorithm is based on the big bang and big contraction theory of the universe. With the increase of number of iterations in optimizing of high dimensional func-tions, the candidates shrink slowly, worsen in quality and weaken rapidly in diversity, as well as sink in-to a local optimal solution. In light of these features, an improved hybrid BB-BC algorithm ( HBB-BC) is proposed. This algorithm puts the center of mass into contemporary candidates computing as a singular point solution to increase the speed of contraction and improves the candidates’ quality and enhances its diversity by mean of Particle Swarm optimization (PSO). At last, Big Rip theory is introduced to in-crease the diversity of the big bang phase solutions and the ability to jump out of local optimal solution. The experimental results tested by 9 new benchmark test functions indicate that the improved algorithm performs better than the BB-BC and Uniform Big Bang-Chaotic Big Crunch ( UBB-CBC) on optimization of high dimensional functions.
出处 《广东工业大学学报》 CAS 2016年第4期12-17,共6页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(61502108) 广东省重大科技专项资助项目(2014B010111007) 广东省自然科学基金资助项目(2014A030313512)
关键词 宇宙大爆炸算法(BB-BC) 粒子群优化(PSO) 高维优化 质心 奇点解 high di-mensional optimization center of mass singular point solution
作者简介 吴伟民(1956-),男,教授,硕士生导师,CCF会员(E200030580M),主要研究方向为可视计算、系统工具与平台.
  • 相关文献

参考文献20

  • 1EROL 0 K , EKSIN I. A new optimization method: bigbang-big crunch [J] . Advances in Engineering Software,2006, 3 7 : 106-111.
  • 2KUMBASAR T , EKSIN I , GUZELKAVA M, et al. BigBang Big Crunch Optimization Method Based Fuzzy ModelInversion [M] //M IC A I 2008 : Advances in Artificial Intelligence.Berlin: Springer Berlin Heidelberg, 2 0 0 8 : 73 2 740.
  • 3KAVEH A , FARHOUDI N. A unified approach to parameterselection in meta-heuristic algorithms for layout optimization[J] . Journal of Constructional Steel Research, 2011,6 7 ( 1 0 ) : 1453-1462.
  • 4Desai S R , Prasad R. A novel order diminution of LTI systemsusing big bang big crunch optimization and routh Approximation[J] . Applied Mathematical Modelling, 2013( 3 7 ) :8016-8028.
  • 5JARADAT G M, AVOB M. Big bang-big crunch optimizationalgorithm to solve the course timetabling problem[C~\ //Intelligent Systems Design and Applications (ISD A ) , 201010th International Conference on. Cairo : IEEE, 2010 :1448-1452.
  • 6LABBI Y , ATTOUS D. Big bang-big crunch optimizationalgorithm economic dispathch with valve-point effect [J].Journal of Theoretical & Applied Information Technology,2010, 16:881-887.
  • 7HATAMLOU A , ABDULLAH S , HATAMLOU M. Dataclustering using big bang-big crunch algorithm [M] . BerlinHeidelberg: Springer, 2 0 1 1 : 383-388.
  • 8GENC H M, EKSIN I, EROL O K. Big bang-big crunchoptimization algorithm hybridized with local directionalmoves and application to target motion analysis problem[C] //Systems Man and Cybernetics (SM C) , 2010 IEEE InternationalConference on. Istanbul :IEEE, 2 0 1 0 : 881-887.
  • 9SAKTHIVEL S , PANDIYAN S , MARIKANI S , et al. Applicationof big bang big crunch algorithm for optimal powerflow problems [J] . The International Journal of Engineeringand Science,2013, 2 ( 4 ) :4 1 4 7 .
  • 10AFSHAR M H , MOTAEI I. Constrained big bang-bigcrunch algorithm for optimal solution of large scale reservoiroperation problem [J] . Optim Civ E ng, 2 0 1 1 ,1 : 357 -75.

二级参考文献36

  • 1张伟,唐和生,薛松涛,李凯.基于粒子群优化的结构系统识别[J].燕山大学学报,2009,33(2):153-158. 被引量:4
  • 2TuChengyuan ZengYanjun.A New Genetic Algorithm Based Upon Globally Optimal Choosing and Its Practices[J].工程科学(英文版),2004,2(2):28-32. 被引量:4
  • 3赵传信,季一木.粒子群优化算法在0/1背包问题的应用[J].微机发展,2005,15(10):23-25. 被引量:21
  • 4刘伟,刘海林.基于外点法的混合遗传算法求解约束优化问题[J].计算机应用,2007,27(1):216-218. 被引量:11
  • 5Koh C G,Chen Y F,Liaw C Y.A hybrid computational strategy for identification of structural parameters[J].Comput.Struct.,2003,81(2):107-117.
  • 6Tang H,Xue S.Differential evolution strategy for structural system identification[J].Computer and Structures,2008,86(21-22):2004-2012.
  • 7Erol O K,Eksin I.A new optimization method:Big Bang-Big crunch[J].Advances in Engineering Software,2006,37(2):106-111.
  • 8Kumbasar T,Yesil E,Eksin I,et al.Inverse fuzzy model control with online adaptation via Big Bang-Big Crunch optimization[R].The 3rd International Symposium on Communications,Control and Signal Processing,Malta,2008.
  • 9Genc H M,Hocaoglu A K.Bearing-only tracking based on Big Bang-Big Crunch algorithm[R].3rd International Multi-Conference on Computing in the Global Information Technology,Greece,2008.
  • 10Camp C V.Design of space trusses using Big Bang-Big Crunch optimization[J].Journal of Structural Engineering,2007,133:999-1008.

共引文献8

同被引文献32

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部