期刊文献+

水辅助CVD法合成碳纳米管阵列以及制备取向碳纳米管阵列/环氧树脂多孔复合膜

Synthesis of carbon nanotube array by water-assisted CVD method to prepare aligned carbon nanotube array/epoxy composite porous membrane
在线阅读 下载PDF
导出
摘要 碳纳米管作为一维碳纳米材料,具有十分独特的结构与物理化学性质.近年来,人们开始着重研究碳纳米管的内部填充与物质传输的性质,因此,合成高质量,高通透性的碳纳米管具有重要的意义.采用电子束蒸镀催化剂CVD法制备碳纳米管阵列,并且引入了水蒸汽用以刻蚀多余的无定型碳,最终合成了高质量,高通透性的碳纳米管阵列.碳管内径主要分布在8nm到15nm之间,高度可达在100μm以上,最高可达厘米级别,管壁厚度一般在1.2~2nm之间.进一步通过环氧树脂包埋结合微切片技术,制备出取向碳纳米管阵列/环氧树脂多孔复合膜,通过一系列的测试证明合成的复合膜中碳纳米管保持了高度取向性,同时具有良好的通透性并且没有宏观裂缝的出现,这保证了复合膜中碳纳米管是唯一的物质传输通道,为进一步研究碳纳米管的内部填充与修饰,以及碳纳米管的内部输运行为奠定了基础. As a kind of one dimension carbon nano-material,carbon nanotubes(CNTs)have very unique structure,physical and chemical properties.People began to focus on the internal filling and mass transport properties of carbon nanotube recently.Thus,the synthesis of carbon nanotube array with high quality and permeability comes to be of great significance.The CVD method was used in our experiment to obtain the aligned CNT array assisted by the water vapor which was used to etch the amorphous carbon.The carbon nanotube array with high-quality was successfully synthesized with the inner diameter between 8nm to 15 nm and the height of about 100 micrometers.The thickness of the CNT wall is generally between 1.2nm to 2nm.In addition we prepared carbon nanotube array/epoxy composite porous membrane after a microtome-cut process.The good permeability and crack-free structure ofCNTs membrane ensure that the carbon nanotubes to be the only channel for mass transportation.This builds up a good basis for the study on the internal filling,internal mass transport behavior of carbon nanotubes.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期520-527,共8页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(21204059)
关键词 水辅助 CVD 碳纳米管阵列 多孔复合膜 water-assisted CVD carbon nanotube array composite porous membrane
作者简介 通讯联系人,Email:wangxumuyi@163.com
  • 相关文献

参考文献33

  • 1Lijima S. Helical microtubules of graphitic carbon. Nature, 1991,354(6348) : 56 -- 58.
  • 2Du F,Qu L,Xia Z,et al. Membranes of vertically aligned superlong carbon nanotubes. Langmuir, 2011,27(13) :8437--8443.
  • 3Majumder M,Chopra N, Hinds B J. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. Journal of the American Chemical Society, 2005,127 (25) : 9062--9070.
  • 4Mainak M, Nitin C, Hinds B J, et al. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature,2005,438(7070) :930--930.
  • 5Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes. Nature Nanotech nology,2007,2 (2) :87--94.
  • 6Holt J K, Hyung P,Yinmin W,et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 2006, 312 (5776): 1034-- 1037.
  • 7Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001, 414 ( 6860 ) : 188--190.
  • 8Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences of the United States of America,2003,100(18) : 10175--10180.
  • 9. Lopez L, Simonet B M, Valcarcel M. The potential of carbon nanotube membranes for analytical separations. Analytical Chemistry, 2010,82(13) :5399--5407.
  • 10Majumder M, Chopra N, Hinds B J. Mass transport through carbon nanotube membranes in three different regimes: Ionic Diffusion and Gas and Liquid Flow. Acs Nano, 2011, 5 (5): 3867--3877.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部