摘要
为解决时空上下文快速跟踪算法在目标处于复杂背景及被遮挡情况下容易产生漂移的问题,提出了一种鲁棒的时空上下文快速跟踪算法,通过引入Kalman滤波器,对当前帧中的目标在下一帧中的位置进行估计和预测,并将其作为下一帧时空上下文快速跟踪算法的迭代起点。对不同视频序列的跟踪结果表明,与时空上下文快速跟踪算法和多示例学习跟踪算法相比,提出的算法在目标被遮挡及复杂背景情况下能够更准确地跟踪到目标,并且满足实时性要求。
As traditional fast tracking via spatio-temporal context learning fails to track target stably when target is in the complex background and occlusion condition, a robust fast tracking via spatio-temporal context learning is proposed. The Kalman filter is used to estimate and predict the target’s position in the next frame of current frame. The estimated position is used as the starting point of the iteration of the fast tracking via spatio-temporal context learning in the next frame. Results of tests on variant video sequences show that the proposed algorithm has advantages over fast tracking via spatio-temporal context learning and multiple instance learning tracking when target is in the complex background and occlusion condition. Obtained results satisfy the requirements of real-time tracking.
出处
《计算机工程与应用》
CSCD
北大核心
2016年第12期163-167,共5页
Computer Engineering and Applications
基金
国家自然科学基金(No.61373055)
作者简介
钱凯(1989-),男,硕士研究生,研究方向为目标跟踪,E-mail:qiankai.good@163.com
陈秀宏(1964-),男,博士,教授,硕士生导师,研究方向为数字图像处理、模式识别、目标跟踪.
孙百伟(1988-),男,硕士研究生,研究方向为目标跟踪.