期刊文献+

一种鲁棒的时空上下文快速跟踪算法 被引量:1

Robust fast tracking via spatio-temporal context learning
在线阅读 下载PDF
导出
摘要 为解决时空上下文快速跟踪算法在目标处于复杂背景及被遮挡情况下容易产生漂移的问题,提出了一种鲁棒的时空上下文快速跟踪算法,通过引入Kalman滤波器,对当前帧中的目标在下一帧中的位置进行估计和预测,并将其作为下一帧时空上下文快速跟踪算法的迭代起点。对不同视频序列的跟踪结果表明,与时空上下文快速跟踪算法和多示例学习跟踪算法相比,提出的算法在目标被遮挡及复杂背景情况下能够更准确地跟踪到目标,并且满足实时性要求。 As traditional fast tracking via spatio-temporal context learning fails to track target stably when target is in the complex background and occlusion condition, a robust fast tracking via spatio-temporal context learning is proposed. The Kalman filter is used to estimate and predict the target’s position in the next frame of current frame. The estimated position is used as the starting point of the iteration of the fast tracking via spatio-temporal context learning in the next frame. Results of tests on variant video sequences show that the proposed algorithm has advantages over fast tracking via spatio-temporal context learning and multiple instance learning tracking when target is in the complex background and occlusion condition. Obtained results satisfy the requirements of real-time tracking.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第12期163-167,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61373055)
关键词 时空上下文 漂移 KALMAN滤波 多示例学习 实时性 spatio-temporal context drift Kalman filter multiple instance learning real-time
作者简介 钱凯(1989-),男,硕士研究生,研究方向为目标跟踪,E-mail:qiankai.good@163.com 陈秀宏(1964-),男,博士,教授,硕士生导师,研究方向为数字图像处理、模式识别、目标跟踪. 孙百伟(1988-),男,硕士研究生,研究方向为目标跟踪.
  • 相关文献

参考文献15

  • 1Wu Yi,Lim J,Yang M.Online object tracking:a benchmark[C]//Conference on Computer Vision and Pattern Recognition,2013:2411-2418.
  • 2Yilmaz A,Javed O,Shah M.Object tracking:a survey[J].ACM Computing Surveys,2006,38(4):1-45.
  • 3Matthews L,Ishikawa T,Baker S.The template updateproblem[J].Pattern Analysis and Machine Intelligence,2004,26(6):810-815.
  • 4Ross D A,Lim J,Lin R S,et al.Incremental learning forrobust visual tracking[J].International Journal of ComputerVision,2008,77(1-3):125-141.
  • 5Sevilla-Lara L,Learned-Miller E.Distribution fields fortracking[C]//Computer Vision and Pattern Recognition,2012:1910-1917.
  • 6Kwon J,Lee K M.Visual tracking decomposition[C]//ComputerVision and Pattern Recognition,2010:1269-1276.
  • 7Bao C,Wu Y,Ling H,et al.Real time robust L1 trackerusing accelerated proximal gradient approach[C]//ComputerVision and Pattern Recognition,2012:1830-1837.
  • 8Black M J,Jepson A D.Eigentracking:robust matching andtracking of articulated objects using a view-based representation[J].International Journal of Computer Vision,1998,26(1):63-84.
  • 9Collins R,Liu Y,Leordeanu M.Online selection of discriminativetracking features[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
  • 10Helmut G,Michael G,Horst B.Real-time tracking viaonline boosting[C]//British Machine Vision Conference,2006:47-56.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部