期刊文献+

大芯径光纤温度特性研究

Temperature Characteristics of Large-Core Optical Fiber
原文传递
导出
摘要 利用高低温设备实验研究大芯径光纤在-100~100℃温度范围内温度对大芯径光纤传输损耗的影响。实验结果表明,大芯径光纤在光纤传输第1窗口(850nm波段)传输损耗系数随着温度随机波动,在整个温度区间内其传输损耗系数在2.543dB/km^4.237dB/km范围内波动;研究还发现,经过高低温循环实验测试后,光纤纤芯与包层处未产生顺磁性缺陷,说明在此温度范围内光纤化学键未发生断键情况。通过建立相应的应力模型解释了大芯径光纤在高低温两端传输损耗系数波动较大的原因,并提出了减少温度对大芯径光纤传输损耗影响的相应措施。 Using the high-low temperature equipment, we study the influence of temperature on the transmission loss of the large-core optical fiber in the range of --100℃ to 100 ℃ by experiment. The experimental results show that the transmission loss coefficient at the first window (850 nm waveband) of the large-core optical fiber fluctuates randomly with temperature. The transmission loss coefficient in the whole temperature range is in the range of 2. 543 dB/km to 4. 237 dB/km. The results aslo show that, after high-low temperature cycle, the paramagnetic defects are not found in the optical fiber core and the cladding layer, therefore, the chemical bands of the fiber are not broken. In addition, the corresponding stress model is established to explain why the transmission loss coefficient fluctuates too much at the ends of high-low temperature, and the corresponding measures to reduce the effect of the temperature on transmission loss are proposed.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第5期213-218,共6页 Laser & Optoelectronics Progress
基金 国家863计划(2013AA031502) 科技支撑计划(2015BAI01B05)
关键词 光纤光学 高低温循环 大芯径光纤 传输损耗系数 应力模型 fiber optics high-low temperature cycle large-core optical fiber transmission loss coefficient stressmodel
作者简介 马洪虎(1989-),男,硕士研究生,主要从事特种光纤与器件方面的研究。E-mail:mahonghu2011@163.com 导师简介:王金忠(1970-),男,博士,教授,博士生导师,主要从事高效太阳能电池材料设计、制备与性能,发光薄膜材料,特种光纤与器件等方面的研究。E-mail:jinzhong-wang@hit.edu.cn(通信联系人)
  • 相关文献

参考文献12

二级参考文献39

  • 1张桂才 王巍 等.方波调制干涉式光纤陀螺中的温度相位噪声研究[J].光子学报,1999,28(23):93-98.
  • 2张桂才 王巍.环圈温度特性对光纤陀螺输出漂移的影响[J].光子学报,1999,28(1):317-324.
  • 3S. W. James. M. L. Dockney. R. P. Tatam. Simultaneous independent temperature and strain measurement using in -fibre Bragg grating sensors[J]. Electrom Lett . 1996, 32(12):1133-I134.
  • 4M. G. Xu, L. Dong. L. Reekie el al.. Temperatureindependent strain sensor using a chirped Bragg grating in a tapered optical fibre [J]. Electron. Lett.. 1995. 31(10):823-825.
  • 5Sungchul Kim. Jaejoong Kwon. Sungwoo Kim et al..Temperature-independenl strain sensor using a chirped graling partially embedded in a glass tube[J]. IEEE Photon. Technol.Lett. , 2000. 12(6):678-680.
  • 6A. D. Kersey. M. A. Davis. H. J. Patrick et al.. Fiber grating sensors [J]. J, Lightwave Technol.. 1997. 15(8) : 1442- 1463.
  • 7M. G. Xu. J.L. Archambault, L. Rcekie et al..Discrimination between strain and temperature effects using dualwavelength fibre grating sensors [J]. Electron. Lett.. 1994. 30(13) : 1085- 1087.
  • 8H. J. Patrick. G. M. Williams, A. D. Kersey et al.. Hybrid fiber Bragg grating'long period fiher grating sensor for strain temperature discrimination [J]. IEEE. Photon. Technol. Lett. .1996. 8(9):1223-1225.
  • 9Y.Jeong,J.K.Sahu,D.N.Payne et al..Ytterbium doped large core fiber laser with 1.36 kW continuous wave output power[J].Opt.Express,2004,12(25): 6088-6092.
  • 10Mali Gong,Yanyang Yuan,Chen Li et al..Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers[J].Opt.Express,2007,15(6): 3236-3246.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部