期刊文献+

面向货物运输的移动平台设计与无人直升机追踪控制

Design of Mobile Platform and Tracking Control of Unmanned Helicopter for Cargo Transportation
在线阅读 下载PDF
导出
摘要 由于无人直升机具有垂直起降、机动性好的特点,使其可用于移动平台之间的货物运输,因此,提出了无人直升机跟踪移动平台的货物运输方法。设计了一套用于无人直升机追踪实验的动平台,动平台上可放置物品,无人直升机在追踪动平台过程中同时完成物品的拾起和码放。动平台系统由移动小车平台、运动控制器、引导装置以及地面监视软件等组成,采用MEMS-SINS/GPS组合导航系统作为引导装置的核心部件,完成对移动小车平台的位置和速度估计。提出了由单点GPS测量点提供多个目标点位置的方法,可使无人直升机方便快捷地知道需要拾起和码放物品的目标点。设计开发了一套操作简便、显示友好的地面监控软件,辅助移动平台正常运行,能有效监控引导装置与无人直升机的通信。 Considering that the vertical takeoff and landing(VTOL) unmanned helicopter has good ma- neuverability, a method for tracking mobile platform and transporting cargo by unmanned helicopter is presented. A mobile platform is designed for tracking experiment by the unmanned helicopter. The car- go, placed on the mobile platform, can be picked up and stacked by unmanned helicopter while tracking the platform. The mobile platform system consists of a mobile car platform, a motion controller, a guiding device and a ground control system (GCS). The integrated navigation system based on MEMS- SINS/GPS is the core of the guiding device to estimate the position and the velocity of mobile car plat- form. Moreover, a method is proposed for providing multiple target locations by single GPS antenna position, which helps the unmanned helicopter to pick up and stack goods conveniently. A set of GCS with kind interface is also developed to monitor the communication between the guide device and the un- manned helicopter.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第2期244-250,共7页 Journal of Nanjing University of Aeronautics & Astronautics
基金 武器装备预研基金资助项目 江苏高校优势学科建设工程资助项目 南京航空航天大学基本科研专项研究基金(NEZ014407)资助项目
关键词 无人直升机 追踪 动平台 引导装置 货物运输 地面监控软件 unmanned helicopter tracking mobile platform guiding device cargo transportation ground control system(GCS)
作者简介 通信作者:徐锦法,男,教授,博士生导师,E-mail:xjfae@nuaa.edu.cn。
  • 相关文献

参考文献3

二级参考文献88

  • 1X-50A“蜻蜓”继续试飞[J].无人机,2004(3):31-31. 被引量:1
  • 2Sarris Z, Atlas S. Survey of UAV applicatins in civil markets. In: Proceedings of the 9th Mediterranean Conference on Control and Automation, Dubrovnik, Croatia, 2001. 1 -11.
  • 3Herwitz S R, Dunagan S, Sullivan D, et al. Solar-powered UAV mission for agricultural decision support. In: Proceedings of Geoscience and Remote Sensing Symposium, Toulouse, France, 2003. 1692 -1694.
  • 4Ludington B, Johnson E, Vachtsevanos G. Augmenting UAV autonomy. IEEE Rob Autom Mag, 2006, 13(3): 63-71.
  • 5Campbell M E, Whitacre W W. Cooperative tracking using vision measurements on seascan UAVs. IEEE Trans Control Syst Technol, 2007, 15(4): 613-626.
  • 6Santana P, Barata J. Unmanned helicopters applied to humanitarian demining. In: Proceedings of 10th IEEE Conference on Emerging Technologies and Factory Automation, Catania, Italy, 2005. 729-738.
  • 7Cai G W, Chen B M, Peng K M, et al. Modeling and control system design for a UAV helicopter. In: Proceedings of the 14th Mediterranean Conference on Control and Automation, Ancona, Italy, 2006. 1-6.
  • 8Gavrilets V, Shterenberg A, Dahleh M A, et al. Avionics system for a small unmanned helicopter performing aggressive maneuvers. In: Proceedings of the 19th Digital Avionics Systems Conferences, Philadelphia, USA, 2000. 1 -7.
  • 9Roberts J M, Corke P, Buskey G. Low-cost flight control system for a small autonomous helicopter. In: Proceedings of the 2002 Australian Conference on Robotics and Automation, Auckland, New Zealand, 2002. 546 551.
  • 10Sprague K, Gavrilets V, Dugail D, et al. Design and applications of an avionic system for a miniature acrobatic helicopter. In: Proceedings of the 20th Digital Avionics Systems Conferences, Daytona Beach, USA, 2001. 1-10.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部