期刊文献+

利用跟车模型计算交通流的群的速度和相的速度

Calculation of the Group Velocity and the Phase Velocity in Traffic Flow by Use of a Car-Following Model
在线阅读 下载PDF
导出
摘要 根据具有司机反应时滞的车辆跟车模型,给出该模型的线性稳定性条件,计算了交通流的群的速度和相的速度,讨论了司机反应时滞对群的速度的影响. A reaction of huma Influence of time linear stability criteria are given according to a car following model considering delayed n driver. The group velocity and the phase velocity in traffic flow are computed. The delay on the group velocity is discussed.
作者 莘智 徐鉴
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2016年第2期149-152,共4页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11032209 11272236) 内蒙古师范大学科研基金项目(2015YBXM009)
关键词 交通流 跟车模型 群的速度 相的速度 时滞 traffic flow car-following model group velocity phase velocity time delay
作者简介 莘智(1977-),男,内蒙古太仆寺旗人,同济大学博士研究生,内蒙古师范大学讲师,主要从事非线性动力学和交通流研究 通信作者:徐鉴(1961-),男,上海市人,同济大学教授,主要从事非线性振动、动力学与控制研究.
  • 相关文献

参考文献19

  • 1Whitham G B. I.inear and Nonlinear Waves [M]. Canada:John-Wiley,1999.
  • 2Hellbing D. Traffic and related self driven many-particle systems [J]. Review of Modern Physics, 2001, 73 (4).. 1067 1141.
  • 3Chowdhury D,Santen I.,Schadschneider A. Statistical physics of vehicular traffic and some related systems [J]. Physics Reports, 2000,329 : 199-329.
  • 4Kerner B S. The Physics of Traffic: Empirical Freeway Pattern Features,Engineering Application and Theory [M]. New York .. Springer-Verlog, 2004.
  • 5Kerner B S. Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-Phase Traffic Theory [ M]. Berlin.. Springer-Verlog, 2009.
  • 6Aw A,Rascle M. Resurrection of "second order" models of traffic flow [J]. SIAM Journal of Applied Mathematics, 2000,60(3) :916-938.
  • 7Daganzo C F. Requiem for second-order fluid approximations of traffic flow [J]. Transportation Research Part B, 1995 (29) :277-286.
  • 8Lee H ,Lee H ,Kim D. Origin of synchronized traffic flow on highways and its dynamic phase transition [J]. Phys Rev Lett, 1999,81(5) : 1130-1135.
  • 9Martin T,Arne K. Thee-phase theory and two-phase models with a fundamental diagram in the light of empirical styli- zed facts [J]. Transportation Research Part B,2010,44:983-1000.
  • 10Bando M,Hasebe K,Nakayama A,et al. Dynamical model of traffic congestion and numerical simulation [J]. Physics Review E, 1995,51 : 1035-1042.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部