期刊文献+

一种新的尺度不变特征提取方法 被引量:2

A new approach for scale invariant features detection
在线阅读 下载PDF
导出
摘要 为解决传统尺度不变特征点提取算子计算复杂度高、抗噪能力不强以及特征点位置发生漂移等问题,提出一种基于尺度空间因果关系的尺度不变特征提取方法.首先原图像与高斯函数进行卷积获得高斯平滑图像;然后在原图与高斯图像中分别提取Harris角点作为候选特征点;最后以高斯图像上的候选特征点为中心向原图上投影寻找对应的特征点作为最终的尺度不变特征点.实验结果表明,该算法容易实现、计算效率高、抗噪能力强.该算法能为后续视觉处理提供稳定抗噪的尺度不变特征点. To resolve the problems of high computational complexity, low anti-noise ability and the dnttmg of plxel position, a scale invariant feature algorithm based on causality is proposed in this paper. Firstly the Gauss smoothing image is built up by Gaussian convolution with the original image. Then, the Harris corners are extracted as candidate features both in the original and the Gauss image. Finally, the stable scale invariant features are acquired by projection from the original image to the Gauss image. The experimental results indicate that this algorithm is concise, fast, efficient with strong anti-noise ability, and provides a basis for subsequent visual processing.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2016年第5期85-89,共5页 Journal of Harbin Institute of Technology
基金 湖南省自然科学基金(13JJ9008)
关键词 尺度不变特征 因果关系 重复率 the scale invariant features causality repeatability
作者简介 刘立(1971-),男,博士,硕士生导师. 通信作者:罗扬,liuleelap@163.com.
  • 相关文献

参考文献11

二级参考文献123

  • 1倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(9):1-6. 被引量:83
  • 2方红,章权兵,韦穗.基于非常稀疏随机投影的图像重建方法[J].计算机工程与应用,2007,43(22):25-27. 被引量:27
  • 3LIENOU M, MAITRE H, DATCU M. Semantic annota- tion of satellite images using latent dirichlet allocation [J]. IEEE, Geoscience and Remote Sensing Letters, 2009, 7(1) :28 -32.
  • 4BLEI D M, NG A Y, JORDAN M I. Latent dirichlet al- location [ J ]. Journal of Machine Learning Research, 2003, 3 : 993 - 1022.
  • 5LIU C, SHARAN L, ADELSON E H, et al. Exploring features in a Bayesian framework for material recognition [ C ]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC : IEEE Comput- er Society, 2010 : 239 - 246.
  • 6LOWED G. Distinctive image features from scale-invar- iant key-points [ J]. International Journal of Computer Vision, 2004, 60(2): 91 -110.
  • 7BERG A C, MALIK J. Geometric blur for template ma tching[ C ]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC: IEEE Computer Society, 2001 : 607 - 614.
  • 8OJALA T, PIETIKAINEN M, MAENPAA T. Multireso- lution gray-scale and rotation invariant texture classifica- tion with local binary patterns [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7) : 971 -987.
  • 9FAN Rong-En, CHANG Kai-Wei, HSIEH Cho-Jui, et al. LIBLINEAR: A library for large linear classification [ J]. The Journal of Machine Learning Research, 2008, 9:1871 - 1874.
  • 10ZHU J, AHMED A, XING E P. MedLDA: Maximum margin supervised topic models for regression and classi- fication[ C]//Procedings of the 26th International Con- ference on Machine Learning (ICML). New York, NY: ACM, 2009 : 1257 - 1264.

共引文献55

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部