期刊文献+

立方体钯纳米颗粒的控制合成及其电催化性能

Controlled Synthesis of Cubic Pd Nanoparticles and Their Electrocatalytic Performances
在线阅读 下载PDF
导出
摘要 以乙酰丙酮钯为前驱体,甲醛为还原剂,聚乙烯吡咯烷酮(PVP)为保护剂,N,N-二甲基甲酰胺(DMF)为溶剂,在一定量碘化钾存在下,采用油浴法快速合成出形貌单一、大小均匀的立方体Pd纳米颗粒,平均粒径约10 nm。利用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X-射线粉末衍射(XRD)、X-射线光电子能谱(XPS)等对产物进行了表征。制备Pd纳米立方体的最适宜Pd(acac)_2:PVP:KI摩尔比为1:9:4。所制备的Pd纳米立方体对甲酸电氧化的催化活性是商业Pd黑的1.8倍。 Pd nanoparticles with uniform size and well-defined cubic structures were synthesized with palladium acetylacetonate as a precursor , formaldehyde as a reducing agent , polyvinylpyrrolidone ( PVP) as a stabilizer, N, N-dimethyl formamide as a solvent in the presence of an appropriate amount of KI by oil-bath heating for 3 h.The products were characterized by transmission electron microscopy ( TEM ) , scanning electron microscopy ( SEM ) , X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD).The optimum molar ratio of Pd(acac)2:PVP:KI for the preparation of Pd nanocubes was 1:9:4.The electrocatalytic activities of the as-prepared Pd nanocubes towards formic acid oxidation demonstrated 1.8 times greater than that of Pd black .
出处 《广州化工》 CAS 2016年第9期43-45,共3页 GuangZhou Chemical Industry
基金 国家自然科学基金资助项目(21273289)
关键词 乙酰丙酮钯 聚乙烯吡咯烷酮 甲醛 电催化 palladium palladium acetylacetonate polyvinylpyrrolidone formaldehyde electrocatalysis
作者简介 第一作者:王欢(1991-),男,硕士研究生,研究方向:功能纳米材料与纳米结构。 通讯作者:黄涛,博士,教授。
  • 相关文献

参考文献11

  • 1Huang X, Zheng N. One-pot, high-yield synthesis of 5-fold twinned Pd nanowires and nanorods [ J]. J Am Chem Soc, 2009, 131 (13) : 4602-4603.
  • 2Fu X, Wang Y, Wu N, et al. Preparation of colloidal solutions of thin platinum nanowires [J]. J Mater Chem, 2003, 13(5) : 1192-1195.
  • 3Ren T, Tilley R D. Preparation, self-assembly, and mechanistic study of highly monodispersed nanoeubes [ J ]. J Am Chem Soc, 2007, 129( 11 ) : 3287-3291.
  • 4Xiong Y J, Chert J Y, Wiley B, et al. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process [J]. Nano Lett, 2005, 5(7) : 1237-1242.
  • 5Chen Y, He B, Huang T, et al. Controlled synthesis of palladium icosahedra nanocrystals by reducing H2PdC14 with tetraethylene glycol [J]. Colloid Surf A-Physicochem Eng Asp, 2009, 348(1-3) : 145- 150.
  • 6Niu Z, Peng Q, Gong M, et al. Oleylamine-mediated shape evolution of palladium nanocrystals [ J ]. Angew Chem Int Ed, 2011, 50 ( 28 ) : 6315 -6319.
  • 7Huang X, Tang S, Mu X, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties [ J]. Nature Nanotech, 2011,6 ( 1 ) : 28-32.
  • 8Huang X, Tang S, Zhang H, et al. Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanoerystals [ J ]. J Am Chem Soc, 2009, 131(39) : 13916-13917.
  • 9Zhu H, Chi Q, Zhao Y, et al. Controlled synthesis of concave tetrahedral palladium nanocrystals by reducing Pd ( acac ) 2 with carbon monoxide [ J]. Mater Res Bull, 2012, 47 ( 11 ) : 3637-3643.
  • 10Zhu H, Li G, Chi Q, et al. Controlled synthesis of tetrapod/Mitsubishi- like palladium nanocrystals [ J]. Cryst Eng Comm, 2012, 14 (5): 1531-1533.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部