期刊文献+

奇合数n不是完全数的一些命题 被引量:3

Several results on the positive odd numbers nis not perfect number
在线阅读 下载PDF
导出
摘要 奇完全数问题是数论中的一著名难题.探讨形如4 m+1的奇正整数n=παq2β11 q2β22…q2βss是否为完全数问题,给出其在σ(πα)≡2(mod8)条件下不是完全数的一些命题,由此可以类似地讨论其在σ(πα)≡6(mod8)条件下的情形,从而可以给出4 m+1型合数不是完全数的一系列条件. The problem of perfect number was a well-known difficult problem in number theory. In this paper, the problem that the positive odd numbers of the form 4m+1 was not perfect number was studied. And in the condition of δ(πa^)≡2(mod8), some results on the composite number n=πa^q12β1q2β3…q2^β5 be the form of 4m+1 was not perfect were given. Similarly, the conditions of n=πa^q12β1q2β3…q2^β5was not odd perfect number in the condition of δ(πa^)≡6(mod8)(roodS) can be discussed. Therefore, a series of conditions of the form of 4m+1 was not perfect number could be given.
作者 张四保
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2016年第3期6-11,共6页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(11201411) 喀什大学科研基金资助项目(142513)
关键词 完全数 奇完全数 条件 perfect number odd perfect number condition
作者简介 张四保(1978),男,江西峡江人,喀什大学副教授.
  • 相关文献

参考文献14

  • 1李滨.多元一次不定方程解的结构及其应用[J].安徽大学学报(自然科学版),2015,39(5):6-12. 被引量:1
  • 2盖伊.数论中未解决的问题[M].张明尧,译.北京:科学出版社,2003.
  • 3DICKSON L E.History of theory of number[M].Washington:Washington Carnegie Institution,1919.
  • 4BRENT R P,COHEN G L,RIELE H J.Improved techniques for lower bounds for odd perfect numbers[J].Math Comp,1991,57:857-868.
  • 5MICHA E,RAO I.Odd perfect numbers are greater than 101500[J].Math Comp,2012,81(279):1869-1877.
  • 6NIEISEN P P.Odd perfect numbers have at least nine distinct prime factors[J].Math Comp,2007,76:2109-2120.
  • 7GOTO T,OHNO Y.Odd perfect numbers have a prime factor exceeding 108[J].Math Comp,2008,77:1859-1868.
  • 8PASCAL O,MICHA E,RAO I.On the number of prime factors of an odd perfect number[J].Math Comp,2013,83(289):2435-2439.
  • 9ZHANG Si-bao.Some Results of a Certain Odd Perfect Numb er[J].Chinese Quarterly Journal of Mathematics,2014,29(2):167-170. 被引量:1
  • 10MCDANIEL W L,HAGIS P.Some results concerning nonexistence of odd perfect numbers of the formpαm2β[J].The J Fibonnacci Quart,1975,13(1):25-28.

二级参考文献27

  • 1刘修生.完全数问题的探讨[J].湖北成人教育学院学报,2001,7(3):48-49. 被引量:3
  • 2沈忠华,于秀源.关于数论函数σ(n)的一个注记[J].Journal of Mathematical Research and Exposition,2007,27(1):123-129. 被引量:10
  • 3Chein, J.E.Z., An odd perfect number has at least 8 prime factors, Ph.D. thesis, Pennsylvania State University, 1979.
  • 4Hagis, P., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp., 1980, 35(151): 1027-1032.
  • 5Brent, R.P., Cohen, G.L., Riele, H.J.J., Improved techniques for lower bounds for odd perfect numbers, Math. Comp., 1991, 57(196): 857-868.
  • 6Iannucci, D.E., Sorli, R.M., On the total number of prime factors of an odd perfect number, Math. Comp., 2003, 72(244): 2078-2084.
  • 7Pan cheng-dong, Pan Cheng-biao, Elementary Number Theory, Beijing: Peking University Press, 1992.
  • 8Paolo Starni, On the Euler's factor of an odd perfect number, J. Number Theory, 1991, 37(3): 366-369.
  • 9Sheng Zhong-hua, Yu Xiu-yuan, A note on arithmetic function or(n), Journal of Mathematical Research and Exposition, 2007, 27(1): 123-129.
  • 10李志刚,袁平之.一类不定方程组的解的个数[J].数学学报(中文版),2007,50(6):1349-1356. 被引量:1

共引文献9

同被引文献22

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部