摘要
奇完全数问题是数论中的一著名难题.探讨形如4 m+1的奇正整数n=παq2β11 q2β22…q2βss是否为完全数问题,给出其在σ(πα)≡2(mod8)条件下不是完全数的一些命题,由此可以类似地讨论其在σ(πα)≡6(mod8)条件下的情形,从而可以给出4 m+1型合数不是完全数的一系列条件.
The problem of perfect number was a well-known difficult problem in number theory. In this paper, the problem that the positive odd numbers of the form 4m+1 was not perfect number was studied. And in the condition of δ(πa^)≡2(mod8), some results on the composite number n=πa^q12β1q2β3…q2^β5 be the form of 4m+1 was not perfect were given. Similarly, the conditions of n=πa^q12β1q2β3…q2^β5was not odd perfect number in the condition of δ(πa^)≡6(mod8)(roodS) can be discussed. Therefore, a series of conditions of the form of 4m+1 was not perfect number could be given.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2016年第3期6-11,共6页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(11201411)
喀什大学科研基金资助项目(142513)
关键词
完全数
奇完全数
条件
perfect number
odd perfect number
condition
作者简介
张四保(1978),男,江西峡江人,喀什大学副教授.