期刊文献+

高分辨SAR图像自动区域筛选目标检测算法 被引量:10

An Automatic Block-to-block Censoring Target Detector for High Resolution SAR Image
在线阅读 下载PDF
导出
摘要 在G^0分布背景杂波假设下,基于VI-CFAR算法该文提出一种自动区域筛选的恒虚警目标检测算法,以解决高分辨SAR图像复杂环境背景下的目标检测问题。该算法首先利用变化指数(VI)统计量对局部参考窗内的均匀区域进行筛选,以剔除参考窗内具有目标干扰点的非均匀区域;然后利用均值比(MR)统计量对参考窗内同质的均匀区域进行区域合并,以解决杂波边界处的背景杂波筛选问题;最后利用筛选到的同质均匀区域内的像素集合进行背景杂波参数估计,对待检测区域实现二值检测。通过实测SAR图像车辆目标检测实验表明,在多目标和杂波边界复杂环境背景下,该算法具有较稳定的检测性能和虚警抑制能力。 Assuming the G^0 distribution clutter background, an automatic block-to-block censoring CFAR(ABC-CFAR) detector is proposed based on VI-CFAR for high resolution SAR image in nonhomogeneous environments. Firstly the Variability Index( VI) statistic is used to censor the blocks in the local reference window in order to reject the non-homogeneous ones in which there exists interfering target samples. Then the Mean Ratio( MR) statistic is utilized to select and combine the homogeneous blocks which have the same distribution, in order to solve background clutter censoring problem in clutter edge situation. At last, with the selected blocks, the distribution parameters of the background clutter are estimated, and then the binary detection is implemented in the Block Under Test(BUT). Using the real SAR image data including ground vehicle targets, the experimental results show that the proposed ABC-CFAR detector has robust detection performance and false alarm regulation property in multi-target and clutter edge nonhomogeneous environment.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1017-1025,共9页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61201292 61322103 61372132) 全国优秀博士学位论文作者专项资金(FANEDD-201156) 中央高校基本科研业务费专项资金~~
关键词 恒虚警检测 区域筛选 变化指数 均值比 G^0分布 CFAR detector Block-to-block censoring Variability Index(VI) Mean Ratio(MR) G^0 distribution
作者简介 宋文青:男,1988年生,博士生,研究方向为雷达目标识别、统计信号处理、统计机器学习. 通信作者:王英华yhwang@xidian.edu.cn,王英华:女,1982年生,副教授,博士,主要研究方向为SAR目标检测与识别、极化SAR图像分析与解译等. 刘宏伟:男,1971年生,教授,博士生导师,主要研究方向为雷达自动目标识别、宽带雷达信号处理、网络化雷达技术、自适应和阵列信号处理及目标检测.
  • 相关文献

参考文献22

  • 1何友,黄勇,关键,陈小龙.海杂波中的雷达目标检测技术综述[J].现代雷达,2014,36(12):1-9. 被引量:67
  • 2张小强,熊博莅,匡纲要.一种基于变化检测技术的SAR图像舰船目标鉴别方法[J].电子与信息学报,2015,37(1):63-70. 被引量:16
  • 3WANG Yinghua and LIU Hongwei. PolSAR ship detection based on superpixel-level scattering mechanism distribution features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (8): 1780-1784. doi: 10.1109/LGRS.2015.2425873.
  • 4El-Darymli K, McGuire P, Power D, et al. Target detection in synthetic aperture radar imagery: a state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 1-35. doi: 10.1117/1.JRS.7.071598.
  • 5Mishne G, Talmon R, and Cohen I. Graph-based supervised automatic target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (5): 2738-2754. doi: 10.1109/TGRS.2014.2364333.
  • 6HOU Biao, CHENG Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (4): 811-815.
  • 7ZHANG Yangrui, GAO Meiguo, and LI Yunjie. Performance analysis of typical mean-level CFAR detectors in the interfering target background[C]. IEEE 9th Conference on (Industrial Electronics and Applications) ICIEA, Hangzhou, 2014: 1045-1048.
  • 8Rickard J T and Dillard G M. Adaptive detection algorithms for multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(4): 338-343. doi: 10.1109/TAES.1977.308466.
  • 9Ghandhi P P and Kassam S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427-445.
  • 10Himonas S D and Barkat M. Automatic censored CFAR detection for non-homogeneous environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 286-304.

二级参考文献42

共引文献81

同被引文献90

引证文献10

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部