期刊文献+

考虑曲率纵向变形效应的大变形柔性梁刚柔耦合动力学建模与仿真 被引量:13

RIGID-FLEXIBLE COUPLING DYNAMIC MODELING AND SIMULATION WITH THE LONGITUDINAL DEFORMATION INDUCED CURVATURE EFFECT FOR A ROTATING FLEXIBLE BEAM UNDER LARGE DEFORMATION
在线阅读 下载PDF
导出
摘要 对在平面内做大范围转动的中心刚体柔性梁系统的动力学进行了研究,建立了考虑大变形效应的系统刚柔耦合动力学模型,并进行了动力学仿真.该动力学模型不但考虑了柔性梁横向弯曲变形和纵向变形(包含轴向拉伸变形和横向弯曲变形而引起的纵向缩短项),还考虑了纵向变形对曲率的影响,称为曲率纵向变形效应.在以往的研究中,柔性梁的横向弯曲变形能往往直接使用柔性梁横向弯曲变形来表达,并没有考虑纵向变形的影响.为了考虑柔性梁纵向变形对横向弯曲变形能的影响,在浮动坐标系下使用柔性梁参数方程形式的精确曲率公式来计算柔性梁的弯曲变形能.在此基础上建立了基于浮动坐标系的考虑曲率纵向变形效应的刚耦合动力学模型.论文给出了数值仿真算例,验证了本文所建的动力学模型既能适用于柔性梁的小变形问题,又能适用于大变形问题,且较现有高次刚柔耦合动力学模型更加适用于大变形问题的处理.论文还通过与能处理柔性梁大变形问题的绝对节点坐标法的比较,验证了模型的正确性. The dynamics of a flexible beam which is rotating in a plane is further studied in this paper. The dynamic model of the rigid-flexible coupling system under large deformation is established and here by the dynamic simulation is also carried out. In this dynamic model not only the transversal bending deformation and the longitudinal deformation(including the axial stretching deformation and the longitudinal shortening term caused by the transversal bending deformation) of the flexible beam are considered, but also the curvature effect induced by the longitudinal deformation is included. In the previous studies the bending deformation energy of the beam is usually expressed in terms of the bendingdeformation directly without considering the longitudinal deformation effect. To take into account the influence due to the longitudinal deformation on the bending deformation energy of the beam the precise curvature formula in the form of parametric equation expressed in the floating frame of reference is used to calculate the bending deformation energy. And consequently the rigid-flexible coupling dynamic model of the system with the said the longitudinal deformation induced curvature effect(LDICE) model is obtained. To validate the algorithm presented in this paper, several dynamic simulation examples are given. The results show that the dynamic model presented in this paper can not only be used in the analysis of the small deformation dynamics, but also in the large deformation dynamics, and indicate that the dynamic model with the curvature effect obtained in this paper is more suitable to solve for the large deformation dynamic problems than the high-order coupled(HOC) model presented in the existing literature. The results obtained using the proposed model are compared with the results obtained using the absolute nodal coordinate formulation(ANCF) which is suitable for large deformation problems, and consequently validate the dynamic model proposed in this paper.
出处 《力学学报》 EI CSCD 北大核心 2016年第3期692-701,共10页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(11272155 11132007) 江苏省"333工程"(BRA2011172) 中央高校基本科研业务专项资金(30920130112009)资助项目
关键词 柔性梁 刚柔耦合 动力学 大变形 曲率纵向变形效应 flexible beam rigid-flexible coupling dynamics large deformation longitudinal deformation induced curvature effect
作者简介 章定国,教授,主要研究方向:多体系统动力学与控制.E-mail:zhangdg419@mail.njust.edu.cn
  • 相关文献

参考文献31

  • 1Likins PW. Finite element appendage equations for hybrid coordi- nate dynamic analysis. Journal of Solids and Structures, 1972, 8: 790-831.
  • 2Kane TR, Ryan RR, Banerjee AK. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dy- namics, 1987, 10(2): 139-150.
  • 3Wallrapp O, Schwertassek R. Representation of geometric stiffening in multi-body system simulation. International Journal for Numeri- cal Methods in Engineering, 1991, 32:1833-1850.
  • 4Bakr EM, Shabana AA. Geometrically nonlinear analysis of multi- body system. Computer andStructures, 1986, 23(6): 739-751.
  • 5Wu SC, Haug E. Geometric non-linear substructuring for dynamics of flexible mechanical systems. International Journal for Numerical Methods in Engineering, 1988, 26:2211-2226.
  • 6Wallrapp O, Schwertassek R. Representation of geometric stiffening in multi-body system simulation. International Jou rnal for Numeri- cal Methods in Engineering, 1991, 32:1833-1850.
  • 7洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展[J].动力学与控制学报,2004,2(2):1-6. 被引量:41
  • 8Liu JY, Hong JZ. Geometric stiffening effect on rigid-flexible cou- pling dynamic of an elastic beam. Journal of Sound and Vibration, 2004, 278:1147-1162.
  • 9蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56. 被引量:57
  • 10章定国,余纪邦.作大范围运动的柔性梁的动力学分析[J].振动工程学报,2006,19(4):475-480. 被引量:24

二级参考文献122

共引文献220

同被引文献123

引证文献13

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部