期刊文献+

Parameters inversion of high central core rockfill dams based on a novel genetic algorithm 被引量:16

Parameters inversion of high central core rockfill dams based on a novel genetic algorithm
原文传递
导出
摘要 Parameters identification of rockfill materials is a crucial issue for high rockfill dams. Because of the scale effect, random sampling and sample disturbance, it is difficult to obtain the actual mechanical properties of rockfill from laboratory tests. Parameters inversion based on in situ monitoring data has been proven to be an efficient method for identifying the exact parameters of the rockfill. In this paper, we propose a modified genetic algorithm to solve the high-dimension multimodal and nonlinear optimal parameters inversion problem. A novel crossover operator based on the sum of differences in gene fragments(So DX) is proposed, inspired by the cloning of superior genes in genetic engineering. The crossover points are selected according to the difference in the gene fragments, defining the adaptive length. The crossover operator increases the speed and accuracy of algorithm convergence by reducing the inbreeding and enhancing the global search capability of the genetic algorithm. This algorithm is compared with two existing crossover operators. The modified genetic algorithm is then used in combination with radial basis function neural networks(RBFNN) to perform the parameters back analysis of a high central earth core rockfill dam. The settlements simulated using the identified parameters show good agreement with the monitoring data, illustrating that the back analysis is reasonable and accurate. The proposed genetic algorithm has considerable superiority for nonlinear multimodal parameter identification problems.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期783-794,共12页 中国科学(技术科学英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.51379161&51509190) China Postdoctoral Science Foundation(Grant No.2015M572195) the Fundamental Research Funds for the Central Universities
关键词 rockfill dam parameters back analysis genetic algorithm crossover operator sum of differences in gene fragments 改进的遗传算法 高心墙堆石坝 参数反演 径向基函数神经网络 交叉算子 基因片段 全局搜索能力 参数识别
作者简介 Corresponding author (email: magang630@whu.edu.cn)
  • 相关文献

参考文献3

二级参考文献9

共引文献94

同被引文献230

引证文献16

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部