期刊文献+

基于调制信号的非圆率估计方法

Non-circular rate estimation method based on modulation signals
在线阅读 下载PDF
导出
摘要 针对大部分调制信号具有非圆信号特征的事实,提出一种具体的非圆率估计方法。首先,利用非圆信号的定义式,在理论上分别对作为例子的线性调频信号和二进制相移键控信号进行了非圆率的推导;然后,在理想情况下,利用采样得到的信号,根据最大似然原理推导出非圆率;最后,在高斯白噪声情况下,利用希尔伯特空间的正交分解,重构扩展导向矢量矩阵,再根据最大似然谱估计,构造一个关于非圆率的函数,通过对其共轭求导,得到调制信号的非圆率。通过仿真实验可以看出,该方法能对多个恒定非圆率信号同时入射时的非圆率作出估计,验证了线性调频信号的非圆率随调制时长而变化的特性。 Considering the fact that most of the modulation signals have the characteristics of non-circular signals,a specific estimation method for a non-circular rate is presented. First,the non-circular rate for the linear frequency modulation signal and binary phase shift keying signal was derived in theory by using the definition of non-circular signals,respectively. Second,according to the principle of maximum likelihood,the non-circular rate was deduced by using the signal obtained from the sample ideally. Finally,under the condition of Gaussian white noise,the rate of modulation signals was derived by using the orthogonal decomposition of Hilbert space,reconstructing extension direction vector matrix,and constructing a function about the non-circular rate according to the maximum likelihood spectrum estimation,and getting the non-circular rate of modulation signals by conjugate derivative of the function.The simulation experiment shows that this method can estimate the non-circular rate when arriving multiple constant rates of non-circular signals at the same time,and can verify the non-circular rate of linear frequency modulation signal changes with the length modulation.
出处 《应用科技》 CAS 2016年第2期5-9,共5页 Applied Science and Technology
基金 航空科学基金项目(201401P6001) 中央高校基本科研业务费专项(HEUCF150804)
关键词 调制信号 非圆信号 非圆率 线性调频信号 二进制相移键控信号 modulation signal non-circular signal non-circular rate linear frequency modulation signal binary phase shift keying signal
作者简介 司伟建(1971-),男,研究员,博士. 通信作者:禹芳,E-mail:yufang19900908@126.com.
  • 相关文献

参考文献14

  • 1SI Weijian, ZHU Tong, ZHANG Mengying. A new approachfor estimating the number of sources under the coexistence ofcircular and various noncircular sources[J]. Circuits, sys.tems, and signal processing, 2013, 32(6): 3107.3119.
  • 2ABEIDA H, DELMAS J P. Statistical performance of MU.SIC.like algorithms in resolving noncircular sources [J].IEEE transactions on signal processing, 2008, 56 ( 9):4317.4329.
  • 3STEINWANDT J, ROEMER F, HAARDT M, et al. R.di.mensional esprit.type algorithms for strictly second.ordernon.circular sources and their performance analysis [J].IEEE transactions on signal processing, 2014, 62(18):4824.4838.
  • 4HAARDT M, R.MER F. Enhancements of unitary esprit fornon.circular sources[C] / / Proceedings of IEEE Internation.al Conference on Acoustics, Speech, and Signal Processing.Montreal, Canada: IEEE, 2004, 2: 101.104.
  • 5郑春弟,冯大政,周祎,雷革.基于非圆信号的实值ESPRIT算法[J].电子与信息学报,2008,30(1):130-133. 被引量:16
  • 6冯大政,郑春弟,周祎.一种利用信号特点的实值MUSIC算法[J].电波科学学报,2007,22(2):331-335. 被引量:8
  • 7CHEVALIER P, PIPON F. New insights into optimal widelylinear array receivers for the demodulation of BPSK, MSK,and GMSK signals corrupted by noncircular interferences ap.plication to SAIC[J]. IEEE transactions on signal process.ing, 2006, 54(3): 870.883.
  • 8QI Xiaodong, XU Yougen, FU Sichao, et al. High.resolu.tion DOA estimation of noncircular signals without source e.numeration and eigendecomposition[C] / / Proceedings of In.ternational Conference on Wireless Communications & SignalProcessing. Nanjing, China: IEEE, 2009: 1.4.
  • 9司伟建,林晴晴.一种稳健的非圆信号波达方向估计算法[J].系统工程与电子技术,2013,35(3):469-473. 被引量:3
  • 10HU Shibing. Performance analysis of frequency sweep non.linearities in LFM radars[C] / / Proceedings of InternationalConference on Electrical and Control Engineering. Wuhan,China: IEEE, 2010: 3977.3980.

二级参考文献41

  • 1王维新,吴镇扬,彭岳星,刘陈.DS-CDMA系统中基于盲分离的DOA估计[J].电波科学学报,2005,20(2):226-230. 被引量:1
  • 2徐旭,叶中付.基于多用户去相关的波达方向估计新方法[J].电波科学学报,2005,20(2):247-251. 被引量:2
  • 3H Krim and M Viverg. Two decades of array signal processing research: The parametric approach [J]. IEEE signal processing Magazine, 1996, 13(7): 67- 94.
  • 4L C Godara. Application of antenna arrays to mobile communications, part Ⅱ : Beam-forming and directionof-arrival considerations [J]. in Proc. IEEE 1997, 85 (8) : 1195-1245.
  • 5R O Schmidt. Multiple emitter location and signal parameter estimation [J]. IEEE Trans. Antenna and Propagation, 1986, 34(3): 276-280.
  • 6M D Zoltowski, G M Kautz, and S D Silverstein. Beamspace root-MUSIC [J]. IEEE Trans. Signal Processing, 1993, 41(1): 344-364.
  • 7M Pesavento, A B Gershman and M Haardt. Unitary root-MUSIC with a real-valued eigendecomposition: A theoretical and experimental performance study [J]. IEEETrans. Signal Processing, 2000, 48(5): 1306- 1314.
  • 8P Stoica and A Nehorai. MUSIC, maximum likelihood and Cramer-Rao bound [J]. IEEE Trans. ASSP, 1989, 37(5): 720-741.
  • 9M L MeCloud and L L Seharf. A new subspaee identification algorithm for high-resolution DOA estimation [J]. IEEE Trans. Antenna and Propagation, 2002, 50 (10) : 1380-1390.
  • 10K C Huarng and C C Yeh. A unitary transformation method for angle of arrival estimation [J]. IEEE Trans. ASSP, 1991, 39(4): 975-977.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部