期刊文献+

基于直觉模糊Petri网的知识表示和推理 被引量:12

Knowledge Representation and Reasoning Using Intuitionistic Fuzzy Petri Nets
在线阅读 下载PDF
导出
摘要 针对模糊Petri网存在隶属度单一的问题,将直觉模糊集理论与Petri网理论相结合,构建直觉模糊Petri网(Intuitionistic Fuzzy Petri Nets,IFPN)模型,用于知识的表示和推理.首先构建了IFPN模型,并将其应用于知识的表示,通过在模型中引入抑止转移弧,解决了否命题的表示问题.其次提出了基于矩阵运算的IFPN推理算法,通过修改变迁触发后token值的传递规则,解决了推理过程中的事实的保留问题;通过修改变迁的触发规则,抑制了变迁的重复触发.最后对推理算法进行了分析,并举例验证了提出的IFPN模型及其推理算法的可行性,结果表明IFPN是对FPN的有效扩充和发展,其对推理结果的描述更加细腻、全面. Aimed at fuzzy Petri nets( FPN) existing membership single issue,intuitionistic fuzzy Petri nets( IFPN)was constructed for knowledge representation and reasoning by combining intuitionistic fuzzy sets theory and Petri net theory. Firstly,IFPN model was constructed for knowledge representation,and the issue of negative proposition representation was solved by introducing inhibitive transfer arcs into the model. Secondly,the algorithm based on matrix operation was presented,the issue of fact reservation in reasoning procedure was solved by modifying token value's transfer rules after transitions being fired,and the issue of transitions repeatedly being fired was inhibited by modifying firing rules of transitions. Lastly,the algorithm was analyzed,and the feasibility of proposed IFPN model and algorithm was proved through an example. The result indicates that IFPN is an effective extension and development of FPN,and it describes the reasoning result more delicately and comprehensively.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第1期77-86,共10页 Acta Electronica Sinica
基金 国家自然科学基金(No.61272011) 国家自然科学青年基金(No.61309022)
关键词 直觉模糊Petri网 直觉模糊产生式规则 知识表示 直觉模糊推理 intuitionistic fuzzy Petri nets(IFPN) intuitionistic fuzzy production rules knowledge representation in tuitionistic fuzzy reasoning
作者简介 盂飞翔男,1986年11月出生,河南信阳人,现为空军工程大学计算机应用专业博士研究生,主要研究方向为智能信息处理.E-mail:ttimo@163.com 雷英杰男,1956年11月出生,陕西华阴人,IEEE高级会员.现为空军工程大学教授,博士生导师,主要研究方向为智能信息处理与智能决策.E-mail:leiyjie@163.com
  • 相关文献

参考文献18

  • 1鲍培明.基于BP网络的模糊Petri网的学习能力[J].计算机学报,2004,27(5):695-702. 被引量:87
  • 2C G Looney. Fuzzy Petri nets for rule-based decision mak- ing [J ]. IEEE Transactions on Systems, Man, and Cybernet- ics, 1998,18 ( 1 ) : 178 - 183.
  • 3Shyi-Ming Chen, Jyh-Sheng Ke, Jin-Fu Chang. Knowledge representation using fuzzy Petrinets [J]. IEEE Transactions on Knowledge and Data Engineering, 1990, 2 (3 : 311 -319.
  • 4Shyi-Ming Chen. Weighted fuzzy reasoning using weighted fuzzy Petri nets[ J ]. 1EEE Transactions on Knowledge and Data Engineering,2002,14(2) :386 - 397.
  • 5Meimei Gao, MengChu Zhou, Xiaoguang Huang, Zhiming Wu. Fuzzy reasoning Petri nets [ J ]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Hu- mans ,2003,33 (3) :314 - 324.
  • 6汪洋,林闯,曲扬,李雅娟.含有否定命题逻辑推理的一致性模糊Petri网模型[J].电子学报,2006,34(11):1955-1960. 被引量:9
  • 7贾立新,薛钧义,茹峰.采用模糊Petri网的形式化推理算法及其应用[J].西安交通大学学报,2003,37(12):1263-1266. 被引量:66
  • 8Xiaoou Li, Wen Yu, Felipe Lara-Rosano. Dynamic knowl- edge inference and learning under adaptive fuzzy Petri net framework [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2000, 30 (4) :442 -450.
  • 9X Li, F Lara-Rosano. Adaptive fuzzy Petri nets for dynamic knowledge representation and inference [J]. Expert Systems with Applications ,2000,19:235 - 241.
  • 10Hu-Chen Liu, Long Liu, Qing-Lian Lin, et al. Knowledge acquisition and representation using fuzzy evidential rea- soning and dynamic adaptive fuzzy Petri nets [J]. IEEE Transactions on Cybernetics ,2013,43 ( 3 ) : 1059 - 1072.

二级参考文献27

  • 1何新贵.模糊Petri网[J].计算机学报,1994,17(12):946-950. 被引量:54
  • 2Chen Shyi-Ming, Ke Jyh-Sheng, Chang Jin-Fu. Knowledge representation using fuzzy Petri nets. IEEE Transactions on Knowledge and Data Engineering, 1990, 2(3): 311~319
  • 3Koriem S.M.. A fuzzy Petri net tool for modeling and verification of knowledge-based systems. The Computer Journal, 2000, 43(3): 206~223
  • 4Scarpelli H., Gomide F., Yager R.. A reasoning algorithm for high-level fuzzy Petri nets. IEEE Transactions on Fuzzy Systems, 1996, 4(3): 282~294
  • 5Fay A.. A fuzzy knowledge-based system for railway traffic control. Engineering Applications of Artificial Intelligence, 2000, 13(6): 719~729
  • 6Wang Shyue-Liang, Wu Yi-Huey. Reasoning in fuzzy production systems when input information is incomplete. In: Proceedings of the 1999 IEEE International Fuzzy Systems Conference, Seoul, Korea, 1999, 1557~1560
  • 7Looney C.G.. Fuzzy Petri nets and application. In: Tzafestas S.G. et al. Fuzzy Reasoning in Information,Decision and Control Systems. Norwell, MA: Kluwer Academic Publishers, 1994, 511~527
  • 8Li Xiao-Ou, Yu Wen, Lara-Rosano F.. Dynamic knowledge inference and learning under adaptive fuzzy Petri net framework. IEEE Transactions on Systems, Man, and Cybernetic-Part C: Applications and Reviews, 2000, 30(4): 442~449
  • 9Li Xiao-Ou, Lara-Rosano F.. Adaptive fuzzy Petri nets for dynamic knowledge representation and inference. Expert Systems with Applications, 2000, 19(3): 235~241
  • 10Tsang E.C.C., Yeung D.S., Lee J.W.T.. Learning capability in fuzzy Petri nets. In: Proceeding of the 1999 IEEE International Conference on Systems,Man,and Cybernetics,Tokyo, 1999, 355~360

共引文献154

同被引文献104

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部