期刊文献+

基于改进非负矩阵分解的手背静脉识别算法 被引量:3

Dorsal Hand Vein Recognition Algorithm Based on Improved Nonnegative Matrix Factorization
原文传递
导出
摘要 为提高手背静脉识别过程中特征的有效性,提出了一种基于改进非负矩阵分解(NMF)的识别算法.首先,静脉图像经过分块后,将每一块子图像的像素均值与平均梯度幅值作为图像原始特征;其次,将所有训练样本原始特征形成的特征矩阵进行非负矩阵分解,其中对分解后的系数向量加以稀疏性与可区分性约束,从而形成改进的非负矩阵分解模型;再次,基于梯度投影法对提出的非负矩阵分解模型进行求解,获取新的特征基与特征向量;最后,利用最近邻匹配算法对特征向量进行分类,实现身份的识别.实验结果表明,提出的识别算法可获得较高的识别率,处理过程具有较好实时性. To enhance feature effectiveness during hand dorsal vein recognition,we propose a new recognition algorithm based on improved nonnegative matrix factorization( NMF). Firstly,after dividing vein image into blocks,we use the mean and the average gradient amplitude of sub-image as image original features. Secondly,we apply NMF in the feature matrix which is formed by combining the original feature vectors of all training samples,where the coefficient vectors are imposed by sparse and discriminant constraints,and the improved NMF model can be acquired. Thirdly,we use a projected gradient method to solve the NMF model,and new feature basis and feature vectors are obtained. Finally,new feature vectors are classified by K-nearest neighbour( KNN),and the vein object is identified successfully. Experiment results show that the proposed algorithm has high correct recognition rate and good real-time performance.
出处 《信息与控制》 CSCD 北大核心 2016年第2期193-198,共6页 Information and Control
基金 国家自然科学基金资助项目(61502216 61572244)
关键词 非负矩阵分解 静脉识别 特征提取 梯度投影法 nonnegative matrix factorization vein recognition feature extraction projected gradient method
作者简介 通信作者:贾旭,gbjdjiaxu@163.com.贾旭(1983-),男,博士,副教授.研究领域为模式识别,图像处理 崔建江(1964-),男,博士,副教授.研究领域为模式识别,系统仿真 孙福明(1972-),男,博士,教授.研究领域为模式识别,机器学习.
  • 相关文献

参考文献3

二级参考文献26

  • 1周斌,林喜荣,贾惠波.多分辨率滤波在手背血管特征提取中的应用[J].计算机辅助设计与图形学学报,2006,18(1):41-45. 被引量:7
  • 2C. Garcia, G. Zikos, G. Tziritas. Wavelet packet analysis for face recognition[J]. Image and Vision Computing, 2000, 18(4) :289-297.
  • 3C. Cortes, V. Vapnik. Support vector networks[J]. Machine Learning, 1995, 20(3) : 273-297.
  • 4Kejun Wang, Yan Zhang, Zhi Yuan et al.. Hand vein recognition based on multi supplemental Features of multi-classifier fusion decision[C]. The 2006 IEEE International Conference on Mechatronics and Automation, 2006. 1790-1795.
  • 5Chihlung Lin, Kuochin Fan. Biometric verification using thermal images of palm dorsa vein patterns[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (2): 199-213.
  • 6L. Wang, G. Leedham, S.-Y. Cho. Infrated imaging of hand vein patterns for biometric purposes[J]. Computer Vision, 2007, 1(3-4): 113-122.
  • 7J. M. Cross, C. L. Smith. Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification [C]. Proceedings of 29th International Carnahan Conference on Security Technology, 1995. 20-35.
  • 8M. Shahin, A. Badawi, M. Kamel. Biometric authentication using fast correlation of near infrared hand vein patterns[J]. International Journal of Biomedical Sciences, 2007, 2 ( 3 ) : 141-148.
  • 9Lingyu Wang, Graham Leedham, David Siu Yeung Cho. Minutiae feature analysis for infrared hand vein pattern biometrics [J]. Pattern Recognition, 2008, 41:920-929.
  • 10R. E. Learned, A.S. Willsky. A wavelet packet approach to transient signal classification [J]. Applied and Computational Harmonic Analysis, 1995, 2(3): 265-278.

共引文献15

同被引文献15

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部