期刊文献+

Level Set方法在Z切石英各向异性湿法刻蚀模拟中的应用

Application of Level Set method in 3-D micro-structure simulation of Z-cut quartz after anisotropic wet etching
在线阅读 下载PDF
导出
摘要 石英是MEMS元器件的重要基底材料,其各向异性湿法刻蚀过程极为复杂。Level Set方法作为一种隐式追踪运动界面的方法,可用于追踪复杂运动界面。详细说明了Level Set方法在石英各向异性湿法刻蚀模拟中的应用过程,包括构建函数、控制方程、数值解法和重新初始化。通过Z切石英凹槽、凸台刻蚀形貌SEM图和模拟结果的对比,表明基于Level Set方法开发的石英湿法刻蚀三维形貌模拟程序是稳定有效的。 Quartz is an important for MEMS and its anisotropic wet substrat etching e material process 1S quite complex. As an implicit-expression mathematical approach for the capture of dynamic surface, the Level Set (LS) method can be used to track complex motions. The application process of LS method simulation of quartz is introduc in ed 3-D micro-structure in detail, including building LS function and control equation, numerical solution and reinitialization. Then, the simulation results of 3-D micro-structures of the mesas and cavities of Z-cut quartz after anisotropic wet etching are compared with the SEM pictures, and the results verify that the developed simulation program is stable and effective
机构地区 东南大学
出处 《传感器世界》 2016年第4期7-11,共5页 Sensor World
基金 江苏省前瞻性联合研究项目(NO.BY2015070-06)
关键词 LEVEL SET Z切石英 湿法刻蚀 三维形貌模拟 Level Set (LS) Z-cut quartz anisotropic wet etching 3-D micro-structure simulation
作者简介 蔡鹏鹏,东南大学研究生,从事MEMS微结构加工工艺研究。通讯地址:南京市江宁区东南大学路2号东南大学九龙湖校区机械工程学院邮编:211189邮箱:ppcaid@163.com 仇晓黎,东南大学教授,从事CAD/CAM/CAPP/CAE、数控技术、先进制造技术等方面研究。 幸研,东南大学教授,从事微纳加工工艺及其表面质量控制、微纳工艺物理计算模型研究等方面研究。
  • 相关文献

参考文献11

二级参考文献18

  • 1王翔,赵钢,马德盛,黄文浩.微细光成型固化工艺参数优化[J].光学精密工程,2007,15(4):453-459. 被引量:3
  • 2李云红,孙晓刚,原桂彬.红外热像仪精确测温技术[J].光学精密工程,2007,15(9):1336-1341. 被引量:124
  • 3V. Caselles, R. Kimmel, G. Sapiro, Geodesic Active Contours [J]. International Journal of Computer Vision,1997, 22(1): 61-79.
  • 4Chan T., L. Vese., Active contours without edges, UCLA CAM Report 98-53.
  • 5M. Sussman, P. Smereka, and S. Osher, A level set method for computing solutions to incompressible two-phase flow, J. Comput. Phys. 119, 146(1994).
  • 6D. P. Peng, B. Merriman, S. Osher, H. K. Zhao, A PDE-based fast local level set method, J. Comput Phys.155, 410(1999).
  • 7C. W. Shu, Total-variation-diminishing time discretization SIAM J. Sci. Star. Comput. 9, 1073(1988).
  • 8G. Sapiro, Geometric partial differential equations and image analysis, Cambridge Univ. Press, New York, 2001.
  • 9Sethian J., Level set methods and fast marching methods evolving interfaces in computational geometry, fluid mechanics, computer vision, and material science,Cambridge Univ. Press, New York, 1999.
  • 10Osher S., The level set method: applications to imaging science, UCLA CAM Report 02-43.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部