期刊文献+

基于热压块的不锈钢粉尘还原实验 被引量:3

Reduction Experiment of Stainless Steel Dust Based on Hot Briquetting
在线阅读 下载PDF
导出
摘要 为了从不锈钢粉尘中回收利用Fe,Cr和Ni等,对不锈钢粉尘热压块制备及其自还原过程进行了研究.在热压温度为200℃,热压压力为35 MPa条件下,抗压强度达到900 N/个以上.高温条件下,煤热解产生的挥发分可参与不锈钢粉尘还原反应,当还原温度为1 400,1 450℃时,挥发分还原作用率达到0.4.据XRD分析和热力学计算,自还原过程中含铬物质的物相转变顺序为Fe Cr2O4,Cr2O3,Cr7C3,[Cr]Fe-Cr-Ni-C.当还原温度为1 450℃,烟煤中固定碳与粉尘中可去除氧的物质量的比(xc/xo)为0.72时,不锈钢粉尘热压块不能完全还原;当xc/xo大于0.8,还原20 min时,不锈钢粉尘热压块能完全还原. To efficiently recycle valuable metal such as Fe,Cr and Ni in stainless steel dust,the preparation and self-reduction of coal composite stainless steel dust hot briquette( CCSB) were researched. Under 200 ℃ hot briquetting temperature,35 MPa hot briquetting pressure,the compressive strength was above 900 N / P. Volatile matter of coal pyrolysis could take part in reduction of stainless steel dust under high temperature,and reduction action rate of volatile matter was 0. 4 at 1 400 or 1 450 ℃. XRD analysis and thermodynamic calculation results showed that product containing chromium is appeared as Fe Cr2O4,Cr2O3,Cr7C3,[Cr]Fe-Cr-Ni-Cin turn in the self-reduction process. Under 1 450 ℃ reduction temperature,CCSB with 0. 72 of xc/ xocan not completely be reduced,but CCSB with 0. 8 of xc/ xoor more can completely be reduced under1 450 ℃,20 min.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第4期490-495,共6页 Journal of Northeastern University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(N110202001)
关键词 不锈钢粉尘 热压块 自还原 挥发分 stainless steel dust hot briquette self-reduction volatile matter chromium
作者简介 李晰哲(1982-),男,朝鲜人,东北大学博士研究生; 储满生(1972-),男,安徽岳西人,东北大学教授,博士生导师.
  • 相关文献

参考文献10

  • 1Geldenhuis J M A, Home A W. Recovery of valuables and stabilization of chromium (Ⅵ) in stainless steel flue dust fines[C]// Steelmaking Conference Proceedings. Nashville, 2002:661 - 667.
  • 2Nolasco-Sobrinho P J, Espinosa D C R. Characterization of dusts and sludge generated doting stainless steel production in Brazilian industries [ J]. Ironmaking Steelmaking, 2003,30 (1):11 -17.
  • 3Sofilic T I, Rastovcan-Mioc A, Cerjan-Stefanovic S, et al. Characterization of steel mill electric-arc furnace dust [ J ]. Journal of Hazardous Materials ,2004,109 ( 1 ) :59 - 70.
  • 4Homeward R,Munson W, Schreyer D. Processing EAF dusts and other nickel-chromium waste materials pyrometallurgicaily at INMETCO [ J ]. Minerials and Metallurgical Processing, 1992,9 (3) : 169 - 173.
  • 5Money K,Hanewald R, Bleakney R. Processing steel wastes pyrometallurgically at Inmetco [ C ]//The 4th International Symposium on Recycling of Metals and EngineeredMaterials. Warrendale,2000:397 - 408.
  • 6Joyner K E. FASTMET/FASTMELT:the final steps in waste recovery[J ] Revue de Metallurgies, 2000,97 ( 4 ) : 461 - 469.
  • 7Varnbuler C B V, Lemperle M, Rachner H. Recovery of chromium and nickel from waste materials using the OxyCup process [ C ]// Tecnologia em Metalurgia, Materials e Mineracao. Sao paulo ,2010:364 - 373.
  • 8Ahmed H M, Viswanathan N, Bjorkman B. Composite pellets-a potential raw material for iron-making [ J]. Steel Research International,2014,85 ( 3 ) :293 - 306.
  • 9Kapure G U, Rao C B, Tathavadkar V D, et al. Direct reduction of low grade chromite overburden for recovery of metals[ J]. Ironmaking Steelmaking ,2011,38 ( 8 ) :590 - 596.
  • 10Tomoyuki M, Jian Y, Mamoru K. Mechanism of carbothermic reduction of chromium oxide[ J]. ISIJ International,2007,47 (10) :1387 - 1393.

同被引文献46

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部