期刊文献+

基于NSGA-Ⅱ算法的传感器目标分配 被引量:1

Sensor-target Assignment with Multi-objective NSGA-Ⅱ Algorithm
在线阅读 下载PDF
导出
摘要 将传统的传感器目标分配问题转化为了基于跟踪效能最大和传感器使用率最小的多目标优化模型。利用非劣分层遗传算法处理传感器目标分配多目标优化问题。非劣分层遗传算法通过对种群内的所有个体的多个目标函数进行非劣分层排序来度量个体的适应能力,通过遗传算法能够获取Pareto最优解集。仿真试验表明该方法能够获得满意效果。 The sensor-target assignment problem is transformed into a multi-objective optimization model ,which is based on maximum detection efficiency and minimum the used sensor resource .The non-dominated set ranking genetic algo-rithm(NSGA- Ⅱ ) is presented to solve the multi-objective optimization sensor-target assignment problem .The population's fitness is evaluated by the non-dominated set rank ,the diversity evolution operation is evaluated by genetic algorithm (GA) . The proposed NSGA- Ⅱ algorithm can provide Pareto-optimal front .The simulation experiment gives good assignment re-sult .
出处 《舰船电子工程》 2016年第3期32-34,56,共4页 Ship Electronic Engineering
关键词 多目标优化 遗传算法 传感器目标分配 非劣分层 PARETO multi-objective optimization genetic algorithm sensor-target assignment non-dominated set ranking Pa-reto set
作者简介 吴建刚,男,硕士,工程师,研究方向:项目管理。
  • 相关文献

参考文献10

  • 1Bar-Shalom Y, Willet P, Tian X. Tracking and data {usion: a handbook o{ algorithms [J]. Control Sys-tems,BO12,32(5):l14-116.
  • 2Kruger A B. Itegrated tracking and sensor management based on expected information gain[C]//Proc, of SHE Signal Processing, Sensor Fusion, and Target Recog- niton, 2007,6567 : 65670C1-Cll.
  • 3Kolba M P, Collins L M. Sensor management using a new framework for observation modeling[C]//Proc, of SHE Signal Processing and Statistical Classification, 2009,7303 : 1-26.
  • 4Nash J M. Optimal allocation of tracking resources [C]//Proc. of the IEEE Conference on Decision and Control, 2000 : 1177-1180.
  • 5Avasarala V A. Market-based approach to sensor man- agement[J]. Journal of Advances in Information Fu- sion, 2009,4 : 1-27.
  • 6Chavali P, Nehorai A. Managing multi-modal sensor networks using price theory[J]. IEEE Trans. on Sig- nal Processing, 2012,60(9) : 4874-4886.
  • 7Kalyanmoy D. Muihi-objective optimization using evo- lutionary algorithms[M]. New York: John Wiley Sons, 2001: 245-253.
  • 8Kundu D, Suresh K, Ghosh S, et al. Muihi-objective optimization with artificial weed colonies[J]. Informa tion Science,2011 (181) :2441-2454.
  • 9Srinivas N, Deb K. Muilti-objective optimization using nondominated sorting in genetic algorithms[J]. Evolu- tionary Computation, 1994,2(3) : 221-248.
  • 10Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-I [J]. Evo- lutionary Computation, IEEE Transactions on,2002,6 (2) :182-197.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部