期刊文献+

基于势流理论和OpenFOAM的耦合模型对多向不规则波浪的模拟 被引量:11

Numerical research on multidirectional waves progresses on the coupling model based on the potential theory and OpenFOAM
在线阅读 下载PDF
导出
摘要 基于势流理论的数值水池可以快速计算波浪的传播及其对建筑物的作用,但是势流理论是基于波浪的无黏性假设的,而在工程中,通常需要在固体边界及波浪破碎的区域考虑黏性效应。针对基于求解Navier-Stokes方程的黏性水池计算量较大、速度较慢的缺点,采用耦合的方法模拟多向不规则波浪的传播,即在外域通过基于势流理论的数值水池产生多向不规则波浪,内域采用求解Navier-Stokes方程和流体体积法(VOF方法)对自由表面进行追踪,通过外域所提供的边界波浪,内域计算可以在较小区域进行计算,从而达到减少计算量、提高计算效率的目的。 The numerical wave tank based on the potential theory simulates the wave progression and wave-structure interaction quickly,but it is based on the assumption of non-viscous. In reality,viscous effects are always considered at solid boundaries and wave-broken areas. For the viscous numerical wave basin based on solving the Navier-Stokes equation,however,it has the insufficient of large amount of calculation. Currently,the coupling method is used to simulate wave progression to reduce the amount of calculation and enhance the efficiency. In the outer domain,multidirectional irregular waves are generated from potential theory,and in the inner domain,the Navier-Stokes equation is solved in combination the VOF method to track the free surface.
出处 《水科学进展》 EI CAS CSCD 北大核心 2016年第1期88-99,共12页 Advances in Water Science
基金 国家自然科学基金资助项目(51579038 51490672)~~
关键词 势流理论 OPENFOAM 耦合 多向不规则波浪 potential theory OpenFOAM coupling model multidirectional irregular wave
作者简介 季新然(1986-),男,河南新乡人,博士研究生,主要从事港口、海岸和近海工程研究。E-mail:jixinran2005@gmail.Com 通信作者:柳淑学,E—mail:liusx@dlut.edu.cn
  • 相关文献

参考文献26

  • 1TANIZAWA K, TAGUCHI H, SAWADA H. Application of NWT to the design of ART[C]//Proc of the 13th International Offshore and Polar Engineering Conference. Honolulu:The International Society of Offshore and Polar Engineers, 2003:307-314.
  • 2GRILLI S, GILBERT R, LUBIN P, et al. Numerical modeling and experiments for solitary wave shoaling and breaking over a sloping beach[C]//Proc of the 14th International offshore and polar engineering conference IGARSS. Toulon:The International Society of Offshore and Polar Engineers, 2004:306-312.
  • 3LACHAUME C, BIAUSSER B, GRILLI S T, et al. Modeling of breaking and post-breaking waves on slopes by coupling of BEM and VOF methods[C]//Proc of the 13th Offshore and Polar Engineering Conference. Honolulu:The International Society of Offshore and Polar Engineers, 2003:353-359.
  • 4BAI W, TAYLOR R E. Numerical simulation of fully nonlinear regular and focused wave diffraction around a vertical cylinder using domain decomposition[J]. Applied Ocean Research, 2007, 29(1/2):55-71.
  • 5房克照,邹志利.应用二阶完全非线性Boussinesq方程模拟破碎波浪[J].水科学进展,2012,23(1):96-103. 被引量:6
  • 6MA Q W, WU G X, TAYLOR R E. Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves:Part 1:methodology and numerical procedure[J]. International Journal for Numerical Methods in Fluids, 2001, 36(3):265-285.
  • 7MA Q W, WU G X, TAYLOR R E. Finite element simulations of fully non-linear interaction between vertical cylinders and steep waves:Part 2:numerical results and validation[J]. International Journal for Numerical Methods in Fluids, 2001, 36(3):287-308.
  • 8WANG C Z, WU G X. Interactions between fully nonlinear water waves and cylinder arrays in a wave tank[J]. Ocean Engineering, 2010, 37(4):400-417.
  • 9ENGSIG-KARUP A P, BINGHAM H B, LINDBERG O. An efficient flexible-order model for 3-D nonlinear water waves[J]. Journal of Computational Physics, 2009, 228(6):2100-2118.
  • 10BINGHAM H B, ZHANG H. On the accuracy of finite-difference solutions for nonlinear water waves[J]. Journal of Engineering Mathematics, 2007, 58(1/2/3/4):211-228.

二级参考文献41

  • 1李绍武,李春颖,谷汉斌,时钟.一种改进的近岸波浪破碎数值模型[J].水科学进展,2005,16(1):36-41. 被引量:13
  • 2马小舟,董国海,滕斌.破碎带波浪的数值模拟[J].计算力学学报,2007,24(2):203-208. 被引量:13
  • 3柳淑学,李金宣,KEYYONG Hong.多向聚焦破碎波的实验研究[J].水动力学研究与进展(A辑),2007,22(3):293-304. 被引量:14
  • 4SCHAFFER H A. Second,order wavemaker theory for irregular waves[J]. Ocean Engineering, 1996, 21(1) : 47 - 88.
  • 5NEWMAN J N. Approximation of free-surface Green functions[A]. In: MARTIN P A, WHICKHAM G R. Wave Asympotics[C]. Cambridge: Cambridge University Press, 1992.107- 142.
  • 6NING D Z, TENG B. Numerical simulation of fully nonlinear irregular wave tank in three-dimension[J]. International Journal for Numerical Methods in Fluids, 2007, 53(12) : 1 847 - 1 862.
  • 7LONGUET-HIGGINS M S, COKELET E D. The deformation of steep surface waves on water, Ⅰ: a numerical method of computation[J]. Proceedings of the Royal Society of London, 1976, 350 (A) : 1 - 25.
  • 8SHE K, GREATED C A , EASSON W J. Experimental study of three-dimensional wave kinematics[J]. Applied Ocean Research, 1997, 19: 329 - 343.
  • 9BALDOCK T E, SWAN C, TAYLOR P H. A laboratory study of nonlinear surface waves on water[J]. Phil Trans R Soc Lond A, 1996, 354: 649 - 676.
  • 10TURNBULL M S, BORTHWICK A G L, EATOCK R. Numerical wave tank based on a a-transformed finite element inviscid flow solver[J]. International Journal for Numerical Methods in Fluids, 2003, 42:641 -663.

共引文献36

同被引文献71

引证文献11

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部