期刊文献+

新浪微博信息传播的影响因素分析与效果预测 被引量:14

Analysis and Effect Prediction of The Influence Factors of Sina Micro-blog Information Dissemination
在线阅读 下载PDF
导出
摘要 本文以新浪微博平台为数据采集平台,对微博信息传播的影响因素和效果进行数据分析,在借鉴信息传播四要素和流行三要素的基础上,总结出了影响微博信息传播的16个因素。首先通过对"风云人气榜"上随机抓取的320个新浪微博用户数据进行多元线性回归预测,实证得到粉丝数、工作时间和发布时间对微博信息传递有促进作用,而活跃度、休息时间和日期对信息传播有阻碍作用;然后利用爬取数据中提取的441 005个转发样本,通过逻辑回归、朴素贝叶斯和贝叶斯网络的概率模型分析,实证了社交类型对用户微博转发行为的影响最为显著,微博社交需求显著高于内容需求,并且根据ROC曲线得出综合类型对用户微博转发行为的预测最为精准。 In this paper,the influence factors and results of the data acquisition are analyzed based on Sina Weibo platform,summed up the 16 factors that affect the microblogging information dissemination,on the basis of the four elements and draw on the dissemination of information on the prevalence of the three elements. First,through the "Storm popularity list" of 320 randomly grab Weibo user data multiple linear regression forecasting,empirical get the number of fans,working time and release time on the microblogging messaging promote the role and activity,rest the time and date have hindered the spread of information. Then take the data extracted from the 441005 forwarding samples,through logistic regression,Naive Bayesian and Bias network probability model analysis,empirical social types of user microblogging forwarding behavior is the most significant,the social needs of micro blog is significantly higher than the content needs,according to the ROC curve to get the comprehensive type of user microblogging forwarding behavior prediction is the most accurate.
作者 柯赟
出处 《现代情报》 CSSCI 北大核心 2016年第3期22-26,共5页 Journal of Modern Information
基金 湖北省教育厅人文社会科学研究项目"基于用户需求的地方新闻网站内容生成创新研究"(项目编号:15G161)
关键词 新浪 微博信息 传播效果 回归分析 效果预测 影响因素 sina micro blog information dissemination effect regression analysis effect prediction influence factors
作者简介 柯赟(1978-),女,副教授,研究方向:网络传播、网络技术、数据挖掘。
  • 相关文献

参考文献10

二级参考文献60

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:73
  • 2程学旗,沈华伟.社会信息网络中的社区分析[J].中国计算机学会通讯,2011,12(7).
  • 3Boyd D, Ellison N B. Social network sites Definition history and scholarship. Journal of Computer Mediated Communication, 2007, 13(1): 210-230.
  • 4Boyd D, Golder S, Lotan G. Tweet, tweet, retweet: Conversational aspects of retweeting on Twitter//Proceedings of the Hawaii International Conference on System Sciences. Hawaii, USA, 2010 1 10.
  • 5Kwak H, Lee C, Park H, Moon S B. What is Twitter, a social network or a news media?//Proceedings of the World Wide Web Conference. Raleigh NC, USA, 2010:591 600.
  • 6Suh B, Hong L, Pirolli P, Chi E H. Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network//Proceedings of the IEEE International Conference on Social Computing-SocialCom. Palo Alto, USA, 2010: 177-184.
  • 7Zaman T R, Herbrich R, van Gael J, Stern D. Predicting information spreading in Twitter//Proceedings of the Neural Information Processing Systems. Vancouver, Canada, 2010, 104(45) : 598-601.
  • 8Stern D, Herbrich R, Graepel T. Matchbox: Large scale online Bayesian recommendations//Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009:111-120.
  • 9Yang Zi, Guo Jingyi, Cai Keke, et al. Understanding retweeting behaviors in social networks//Proceedings of the 19th International Conference on Information and Knowledge Management. Toronto, Canada, 2010:1633-1636.
  • 10Liben-Nowell D, Kleinberg J. Tracing information flow on a global scale using Internet chain letter data. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12): 4633-4638.

共引文献243

同被引文献149

引证文献14

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部