期刊文献+

基于集合论估计的电网状态辨识(一)建模 被引量:13

Power System State Identification Based on Set Theory Estimation Part One Modelling
在线阅读 下载PDF
导出
摘要 状态估计作为电力系统分析与控制的基础,是能量管理系统的重要组成部分。文中通过对已有状态估计方法(包括最小二乘法、经典抗差估计方法以及近年来涌现的新的估计方法)的特点的研究,分析了现有研究存在的主要问题,并指出引入集合论估计可有效解决该问题,以提升估计结果可信性。基于集合论估计的基本思想,研究了基于集合论估计理论的电网状态辨识的模型。该模型可明确系统真实状态和辨识结果的关系,理论上保证了结果的可信性。文中对模型中的属性集合进行了数学描述,并提出了基于区间的解集描述,保证了模型的可求解性和可应用性。 As the basis of analysis and control of the power system,state estimation is an important component part of the energy management system.According to the state estimation methods available(including weighted least squares estimation,classical robust estimation and new estimation methods that have sprung up in recent years),this paper analyzes the main problems in current researches.In addition,it is pointed out that the introduction of set theory estimation can not only solve these problems effectively,but improve the credibility of estimation results significantly as well.Then,based on the main idea of set theory estimation,apower system state identifying model is studied.This model can define the relationship between the true state of system and the identification results,ensuring the credibility of the results.Property sets of this model are described mathematically and solution sets based on intervals are proposed,guaranteeing the solvability and applicability of this model.
出处 《电力系统自动化》 EI CSCD 北大核心 2016年第5期25-31,共7页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(51207136)~~
关键词 状态估计 集合论估计 可信性 电力系统 state estimation set theory estimation credibility power system
作者简介 何光宁(1972-),男,通信作者,博士,教授,主要研究方向:电力系统经济运行及优化理论在电力系统中的应用。E—mail:gyhe@sjtu.edu.cn 常乃超(1977-),男,博士,高级工程师,主要研究方向:电力系统安全经济运行。E-mail:changnaichao@sina.com.cn 董树锋(1982-),男,博士,讲师,主要研究方向:电力系统状态估计和优化运行。E-mail:dongshufeng@zju.edu.cn
  • 相关文献

参考文献31

  • 1SCHWEPPE F C, WILDES J. Power system static state estimation: Part I exact model[J]. IEEE Trans on Power Apparatus and System, 1970, PAS-89(1): 120-125.
  • 2SCHWEPPE F C, ROM D B. Power system static state estimation: Part lI approximate model[J]. IEEE Trans on Power Apparatus and System, 1970, PAS-89(1) : 125 130.
  • 3SCHWEPPE F C. Power system static state estimation: Part Ill implementation[J].IEEE Trans on Power Apparatus andSystem, 1970, PAS-89(1): 130-135.
  • 4HUBER P J, RONCHETTI E M. Robust statistics[M]. 2nd ed. Hoboken, USA~ John Wiley ~ Sons, 2009.
  • 5HUBER P J. Robust estimation of a location parameter[J]. Annals of Mathematical Statistics, 1964, 35(1) : 73-101.
  • 6HAMPEL F R, RONCHETTI E M, ROUSSEEUW P J, et al. Robust statistics, the approach based on influence functions [M]. Hoboken, USA~ John Wiley ~ Sons, 1986.
  • 7HANDSCHIN E, SCHWEPPE F C, KOHLAS J, et al. Bad data analysis for power system state estimation[J]. IEEE Trans on Power Apparatus and Systems, 1975, PAS-94(2) : 329-337.
  • 8MILl L, CHENIAE M G, VICHARE N S, et al. Robust state estimation based on projection statistics [J].IEEE Trans on Power Systems, 1996, 11(2).. 1118 1127.
  • 9ROUSSEEUW P J, LEROY A M. Robust regression and outlier detection[M]. Hoboken, USA: John Wiley ~ Sons, 1987.
  • 10STONE C J. Adaptive maximum likelihood estimators of a location parameter[J]. The Annals of Statistics, 1975, 3(2): 267-284.

二级参考文献84

共引文献118

同被引文献124

引证文献13

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部