期刊文献+

蛋白酶对豆浆凝胶过程微流变性质的影响 被引量:11

Effects of Proteases on Microrheological Characteristics of Soymilk Gel
在线阅读 下载PDF
导出
摘要 通过微流变学方法研究了3种蛋白酶对豆浆凝胶微流变性质的影响。结果表明:3种蛋白酶均对豆浆有凝胶能力,固液平衡点(solid liquid balance,S LB)均低于0.5,碱性蛋白酶对豆浆的凝胶能力相对较弱;在反应前期,菠萝蛋白酶的宏观黏度指数(macroscopic viscosity index,MVI)较高,反应后期则不同体系的MVI相接近。温度对不同蛋白酶凝浆体系弹性因子(elasticity index,EI)的影响也有所差异,菠萝蛋白酶和木瓜蛋白酶的EI均随温度的升高而提高,在70℃时EI值可达到最高分别为0.002 34 nm-2和0.002 75 nm-2,而温度对碱性蛋白酶体系EI影响不明显;菠萝蛋白酶对豆浆的凝胶能力随酶含量增加呈先增大后下降趋势,在800 U/m L时EI最大,木瓜蛋白酶对豆浆的凝胶能力随酶添加量的增加呈增大趋势,而碱性蛋白酶对豆浆的凝胶能力则随酶添加量的增加呈下降趋势。 In this research, effects of proteases(bromelain, papain and alcalase) on microrheological characteristics of soymilk gel were explored. The results showed that all three proteases had the capacity to coagulate soybean milk, while the curding capacity of alacase was weak. At the early stage of curding, the MVI(macro viscosity index) of bromelainsoybean milk system was higher, while the MVI values of different s ystems became similar with prolonging reaction time. Temperature in the range of 30–70 ℃ played an important role in EI(elasticity index) of soymilk gel systems containing different proteases. The EI of gel systems induced by bormelain or papain addition showed an enhancing trend with increasing temperature to reach the maximum level of 0.002 34 and 0.002 75 nm-2, respectively, but temperature did not obviously affect the EI of soymilk system added with alaclase. The curding capacity of bromelain increased to the maximum level of EI at 800 U/m L followed by a decrease with increasing protease dosage in the range of 200–1 200 U/m L. Papain showed an increased curding capacity as its dosage increased, while alcalase showed a downward trend.
出处 《食品科学》 EI CAS CSCD 北大核心 2016年第3期1-5,共5页 Food Science
基金 国家自然科学基金面上项目(31471621) 国家自然科学基金青年科学基金项目(31201385) 辽宁省高等学校优秀人才支持计划项目(LR2014034)
关键词 蛋白酶 豆浆 凝胶 微流变 弹性因子 protease soybean milk gel microrheological characteristics elasticity index
作者简介 刘贺(1979-),男,教授,博士,研究方向为食品大分子的结构与功能及其修饰。E-mail:liuhe2069@163.com
  • 相关文献

参考文献25

  • 1PINDER D N, SWANSON A J, HEBRAUD P, et al. Microrheological investigation of dextran solutions using diffusing wave spectroscopy[J]. Food Hydrocolloids, 2006, 20(2): 240-244. DOI: 10.1016/j.foodhyd.2005.02.012.
  • 2PALMER A, XU J, WIRTZ D. High-frequency viscoelasticity of crosslinked actin filament networks measured by diffusing wave spectroscopy[J]. Rheologica Acta, 1998, 37(2): 97-106. DOI:10.1007/ s003970050095.
  • 3DASGUPTA B R,WEITZ D A. Microrheology of cross-linked polyacrylamide networks[J]. Physical Review E, 2005, 71(2): 021504. DOI: 10.1103/PhysRevLett.71.0211504.
  • 4XU J, TSENG Y, CARRIERE C J, et al. Microheterogeneity and microrheology of wheat gliadin suspensions studied by multiple- particle tracking[J]. Biomacromolecules, 2002, 3(1): 92-99. DOI: 10.1021/bm015586b.
  • 5XU J, PALMER A, WIRTZ D. Rheology and microrheology of semiflexible polymer solutions: actin filament networks[J]. Macromolecules, 1998, 31(19): 6486-6492. DOI:10.1021/ma9717754.
  • 6TSENG Y, WlRTZ D. Mechanics and multiple-particle tracking microheterogeneity of a-actinin-cross-linked actin filament networks[J]. Biophysical Journal, 2001, 81(3): 1643-1656. DOI: 10.1016/S0006-3495(01 )75818-3.
  • 7MASON T G, GANESAN K, van ZANTEN J H, et al. Particle tracking rnicrorheology of complex fluids[J]. Physical Review Letters, 1997, 79(17): 3282-3285. DOI: 10.1103/PhysRevLett.79.3282.
  • 8BREEDVELD V, PINE D J. Microrheology as a tool for high- throughput screening[J]. Journal of Materials Science, 2003, 38(22): 4461-4470.
  • 9DICKINSON E. An Introduction to food colloids[M]. New York: Oxford University Press, 1992: 216.
  • 10HORNED S. Casein interactions: casting light on the black boxes, the structure in dairy products[J]. International Dairy Journal, 1998, 8(3): 171-177. DOI: 10.1016/S0958-6946(98)00040-5.

二级参考文献62

共引文献46

同被引文献91

引证文献11

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部