期刊文献+

基于自适应扩散模型的单帧红外条纹非均匀性校正算法 被引量:6

Single infrared stripe nonuniformity correction algorithm based on adaptive diffusion models
在线阅读 下载PDF
导出
摘要 针对红外焦平面成像系统存在列向条纹非均匀性的现象,采用了一种基于自适应PM扩散模型的非均匀校正新算法。首先,综合利用图像梯度信息和局部灰度统计信息,自适应计算PM模型的扩散阈值;然后将每列像素的PM模型估计值作为该列像素的期望值;最后采用最陡下降法迭代计算得到每列像元的校正参数,并对结果进行循环校正以提高校正效果。实验结果表明:该算法可以保护图像边缘信息,与同类算法相比,能够更有效地抑制条纹非均匀性,并且能够防止图像产生鬼影。 In order to correct the stripe nonuniformity for infrared images captured by infraed focal plane array (IRFPA) , a novel stripe nonuniformity correction algorithm based on adaptive PM diffusion models for single inflared image is adopted. Firstly, the adaptive diffusion threshold of PM model is calculated by gradient infor- mation and local gray level statistics of infrared images. Then, the estimate values of each column pixel are treated as expectations, which are in constraint of PM models. Finally, con'ection parameters in iteration are obtained by method of steepest descent, and the image is corrected repeatedly to improve correction perform- anee. Experimental results indicate that the adopted algorithm can preserve edge information. Compared with other four algorithms, the proposed algorithm has advantage of reducing stripe nonuniformity and removing ghosting artifact.
出处 《中国光学》 EI CAS CSCD 2016年第1期106-113,共8页 Chinese Optics
基金 国家自然科学基金项目(No.61203189) 二炮院校青年基金资助项目(No.2014QNJJ023)~~
关键词 单帧红外图像 条纹非均匀校正 自适应扩散模型 最陡下降法 鬼影 single infrared image stripe nonuniformity correction adaptive diffusion model steepest descentmethod ghosting artifact
作者简介 陈世伟(1979-),男,河北南和人,博士研究生,讲师,2006年于第二炮兵工程大学获得硕士学位,主要从事机器视觉及自动控制方面的研究。E-mail:cshw3876@tom.com
  • 相关文献

参考文献16

二级参考文献83

  • 1王军,杨会玲,刘亚侠,何昕,郝志航.多CCD拼接相机中图像传感器不均匀性校正[J].半导体光电,2005,26(3):261-263. 被引量:8
  • 2Harris J G, Chiang Y M. Nonuniformity correction of infrared image sequences using the constant-statistics constraint [ J]. IEEE Trans. Image Proc. 1999,8(8) :1148- 1151.
  • 3Scribner D A, Sarkady K A, Caulfield J T, et al. Adaptive retina-like preprocessing for imaging detector arrays [ J ]. Proc. IEEE. , 1993,3 : 1955 - 1960.
  • 4Scribner D A, Sarkady K A, Caulfield J T. Nonuniformity correction for staring IR focal plane arrays using scenebased techniques[ J]. Proc. SPIE. 1990,1305:224 - 233.
  • 5Hardie R C, Hayat M M, Armstrong E E, et al. Scenebased nonuniformity correction using video sequences and registration[ J ]. Applied Optics ,2000,39 ( 8 ) : 1241 - 1250.
  • 6Hardie R C, Baxley F, Brys B, et al. Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm[ J]. Optics Express. 2009, 17 ( 17 ) : 14918 - 14933.
  • 7Vera E, Meza P, Torres S. Total variation approach for adaptive nonuniformity correction in focal-plane arrays [ J ]. Optics Letters. 2011,36 ( 2 ): 172 - 174.
  • 8Shen H, Ai T, Li P. Destriping and inpainting of remote sensing images using maximum a-posteriori method[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS) ,2008, XXX- VII( B1 ) :63 - 70.
  • 9Yang Z, Li J, Menzel W P, et al. De-striping for MODIS data via wavelet shrinkage [ J ]. Proc. SPIE. 2003,4895 : 187 - 199.
  • 10Qian W X, Chen Q, Gu G H, et al. Correction method for stripe nonuniformity [ J ]. Applied Optics, 2010, 49 ( 10 ) : 1764 - 1773.

共引文献80

同被引文献47

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部