期刊文献+

基于高分辨率遥感影像的城市典型乔木树种分类研究 被引量:23

Urban Tree Species Classification with Machine Learning Classifier Using WorldView-2 Imagery
在线阅读 下载PDF
导出
摘要 为探索高分辨率遥感影像对城市复杂环境优势乔木树种分类的有效性,采用面向对象分类方法,基于WorldView-2影像对首都师范大学及周边地区(CNU)、北京师范大学及周边地区(BNU)两个研究区进行优势乔木树种(泡桐、法国梧桐、杨树、国槐、银杏)分类。首先对WorldView-2影像进行分割,获得树冠区域及其49个属性特征,包括31个光谱属性和18个纹理属性;随后利用随机森林RF与支持向量机SVM两种分类算法对树冠区域进行分类。CNU研究区SVM与RF总体分类精度分别为86.5%、75.8%,Kappa系数为0.801、0.648;BNU研究区SVM与RF总体分类精度分别为66.9%、65.3%,Kappa系数为0.541、0.520。实验表明WorldView-2影像能有效实现城市非阴影区域优势乔木树种分类,但异质性较高、树种分布分散的区域分类精度低于异质性较小、树种分布密集的区域;WorldView-2影像的4个新增波段尤其是红边波段的派生属性在分类过程中所占权重值较高。 Urban trees play important roles in urban ecosystems,such as air quality improvement,carbon sequestration,and urban flood control.This study aimed to evaluate the utility of WorldView-2image(acquired on September 14,2012)for urban tree species identification.Two study sites in Beijing,China including CNU and BNU were examined and five tree species including Royal Paulownia(Paulownia Sieb.),London Plane(Platanus acerifolia),Chinese white poplar(Populus tomentosa Carrière),Chinese Scholar tree(Sophora Japonica),and Gingko(Ginkgo biloba L.)were classified.Tree species distribution in CNU is spatially more variable than those in BNU.First,urban tree crowns in non-shadowed areas were extracted using object-based hierarchical threshold method.A total of 49 features including 31 spectral features and 18 textural features were extracted for both areas.Two machine learning classifiers including Support Vector Machine(SVM)and Random Forest(RF)were applied for dominant tree species classification within tree crown areas.The results showed that overall accuracy(OA)in CNU area was higher than BNU area regardless of classification algorithm(86.5% vs.66.9% using SVM and 75.8% vs.65.3% using RF),indicating that spatial variability of tree species distribution had negative effects on classification accuracy;greater variability resulted in lower classification accuracy.At both study sites,SVM with optimal parameters produced higher OA than RF.Besides,the features derived from 4-additional bands,especially red-edge band,were more important than traditional bands during classification.This study proved that WorldView-2images were effective in dominant tree species classification at non-shadowed urban area.Future study will explore tree species classification in shadowed area by shadow restoration.
出处 《地理与地理信息科学》 CSCD 北大核心 2016年第1期84-89,F0003,共7页 Geography and Geo-Information Science
基金 国家自然科学基金资助项目(41401493 41130744) 教育部博士点基金项目(20131108120006) 北京市科技新星项目(Z151100000315092) 中国水利水电科学研究院科研专项基金(JZ0145B042014)
关键词 WorldView-2影像 面向对象 树种分类 随机森林 支持向量机 WorldView-2image object-based method tree species classification random forest support vector machines
作者简介 李丹(1988-),女,硕士研究生,主要研究方向为遥感与GIS应用。 通讯作者E-mail:yke@cnu.edu.cn
  • 相关文献

参考文献24

  • 1YANG J,MCBRIDE J,ZHOU J,et al.The urban forest in Beijing and its role in air pollution reduction[J].Urban Forestry&Urban Greening,2005,3(2):65-78.
  • 2YANG J,ZHAO L,MCBRIDE J,et al.Can you see green assessing the visibility of urban forests in cities[J].Landscape and Urban Planning.2009,91(2):97-104.
  • 3STROHBACH M W,HAASE D.Above-ground carbon storage by urban trees in Leipzig,Germany:Analysis of patterns in a European city[J].Landscape and Urban Planning,2012,104(1):95-104.
  • 4张秀英,冯学智,丁晓东,王珂.基于面向对象方法的IKONOS影像城市植被信息提取[J].浙江大学学报(农业与生命科学版),2007,33(5):568-573. 被引量:16
  • 5LI X,SHAO G.Object-based urban vegetation mapping with highresolution aerial photography as a single data source[J].International Journal of Remote Sensing,2013,34(3):771-789.
  • 6PU R,LANDRY S,YU Q.Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery[J].International Journal of Remote Sensing,2011,32(12):3285-3308.
  • 7ZHOU W,HUANG G,TROY A,et al.Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas:A comparison study[J].Remote Sensing of Environment,2009,113(8):1769-1777.
  • 8MATHIEU R,ARYAL J,CHONG A K.Object-based classification of Ikonos imagery for mapping large-scale vegetation communities in urban areas[J].Sensors,2007,7(11):2860-2880.
  • 9张友静,高云霄,黄浩,任立良.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006,10(2):191-196. 被引量:44
  • 10WASER L,K CHLER M,J TTE K,et al.Evaluating the potential of WorldView-2data to classify tree species and different levels of ash mortality[J].Remote Sensing,2014,6(5):4515-4545.

二级参考文献78

  • 1车生泉,王洪轮.城市绿地研究综述[J].上海交通大学学报(农业科学版),2001,19(3):229-234. 被引量:78
  • 2杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241. 被引量:71
  • 3黄慧萍,吴炳方.地物大小、对象尺度、影像分辨率的关系分析[J].遥感技术与应用,2006,21(3):243-248. 被引量:31
  • 4张学工译.统计学习理论的本质[M].北京:清华大学出版社,1999..
  • 5Hay G J, Niemann K O. Visualizing 3-D Texture: A Three Dimensional Structural Approach to Model Forest Texture[J]. Canadian Journal of Remote Sensing, 1994,20(2) : 90-101.
  • 6Hay G J,Niemann K O, McLean G F. An Object specific Image-texture Analysis of H-resolution Forest Imagery[J]. Remote Sensing Environment, 1996,55 : 108-122.
  • 7Gougeon F A. A Crown-following Approach to the Automatic Delineation of Individual Tree Crowns in High Spatial Resolution Aerial Images[J]. Canadian Journal of Remote Sensing, 1995,24(3) :274-284.
  • 8Hay G J, Niemann K O, Goodenough D G. Spatial Thresholds, Image-objects and Upsealing: A Multiseale Evaluation [J]. Remote Sensing Environment, 1997,62 : 1-19.
  • 9Hay G J, Marceau D J, Bouchard A, et al. A Muttiscale Gram-ework for Landscape Analysis: Object-specific Upscaling[J]. Landscape Ecology, 2001,16 : 471-490.
  • 10Hay G J, Marceau D J. Multiscale Object-specific Analysis (MOSA) :An Integrative Approach for Multiscale Landscape Analysis[M]. Remote Sensing and Digital Image Processing, Kluwer Academic Publishers: Dordrecht, 2004,

共引文献207

同被引文献238

引证文献23

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部