摘要
提出一种改进遗传算法,即在传统遗传算法中融入非均匀变异算子和小生境运算,可使解有效地朝着最优化运行,且更好地保持解的多样性和较高的收敛速度,并且将铲板宽度、铲板倾角及围板厚度作为设计变量,对铲板的铲掘力、装载能力进行多目标优化设计。优化结果表明:优化后铲板宽度降低1.33%,铲板倾角降低9.47%,而铲板围板厚度增加10.4%,这将对掘进机整机稳定性和铲板强度有显著效果;铲板铲掘力提高4.72%,铲板装载能力提高5.12%,改善了掘进机装载机构的综合性能,符合眼下掘进机铲板设计的趋势。同时,在Pro/E,ADAMS,ANSYS协同仿真环境下了优化后铲板的可靠性。
An improved genetic algorithm that integrates into non-uniform mutation operator and niching technology, which could run toward the optimal solution effectively, and to better maintain the diversity of the solution and high convergence speed was proposed. Meanwhile, taking shovel width and shovel dip for design variables optimizes loading capacity, shovel grubbing force and shovel coaming thickness of roadheader shovel. Optimization results show that: shovel width is reduced by 1.33%, shovel dip is reduced by 9.47%, and Shovel coaming thickness is increased by 11.4%, which has a significant effect on the overall stability of roadheader and the shovel strength. Loading capacity is increased by 4.72%, and shovel grubbing force is increased by 5.12% after optimization, which improve comprehensive performance of the loading mechanism of roadheader and accord with development trend of roadheader shovel in line with the current and future. Meanwhile, the reliability of shovel is analysed under the environment of co-simulation of Pro/E, ADAMS and ANSYS.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2016年第2期434-440,448,共8页
Journal of System Simulation
关键词
掘进机铲板
装载能力
铲掘力
铲板围板厚度
改进遗传算法
优化设计
可靠性
roadheader shovel
loading capacity
shovel grubbing force
shovel coaming thickness
improved genetic algorithm
optimization design
reliability
作者简介
王大勇(1979-),男,辽宁阜新,博士生讲师,研究方向为机械系统设计及动态分析。