期刊文献+

基于矢量波场分离弹性波逆时偏移成像 被引量:24

Elastic wave reverse time migration based on vector wavefield seperation
在线阅读 下载PDF
导出
摘要 在传统的弹性波逆时偏移中,通过Helmholtz分解获取的横波的极性随入射方向改变,导致转换波的成像值也随入射方向发生极性变化(极性反转),多炮叠加后转换波成像同相轴将受到破坏。在传统波场分离基础上,对标量势(纵波)与矢量势(横波)分别进行梯度和旋度处理,得到矢量纵波与矢量横波。针对矢量纵横波波场,引入内积成像条件进行偏移成像,通过这种成像方法无需对转换波成像进行极性校正。波场分析结果表明,该方法既适用于同类波高精度成像,也适用于转换波成像。模型实验结果表明了本文方法的正确性和适应性。 With the advances of seismic acquisition,seismic imaging has migrated from using single-component data alone to multi-component elastic wave imaging. Because of its high precision imaging ability,reverse-time migration( RTM) has been widely applied to complex structure imaging. However,S-mode polarization changes via incident direction,which will cause polarity reversal,and this polarity reversal will seriously damage the continuity of reflection events in conventional PS imaging as well as SP imaging after stacking over multiple shots. In the conventional elastic RTM,Helmholtz decomposition is used to obtain the scalar potential( P-wave) and the vector potential( S-wave). In this paper,we introduce gradient and curl operators to the scalar potential and the vector potential,respectively. Consequently,we can obtain vector P-waves and S-waves.As for the vector wavefield,we introduce an inner product imaging condition to the elastic RTM,which can avoid using extra polarity correction. Wavefield analyses show that this method is applicable not only to primary imaging( PP and SS) but also to converted wave imaging( PS and SP). The effectiveness and feasibility of our new imaging method in simple and complex models are illustrated in numerical examples using synthetic data.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期42-48,共7页 Journal of China University of Petroleum(Edition of Natural Science)
基金 大地测量与地球动力学国家重点实验室重点基金项目(SKLGED2015-5-2-EZ) 国家'973'项目(2014CB239006 2011CB202402) 国家自然科学基金项目(41104069 41274124)
关键词 弹性波逆时偏移 极性反转 波场分离 内积成像条件 elastic wave reverse time migration polarity reversal wavefield decomposition inner product imaging condition
作者简介 李振春(1963-),男,教授,博士,博士生导师,研究方向为地震波正演及偏移成像。E-mail:leonli@upc.edu.cn。 黄建平(1982-),男,副教授,博士,研究方向为地震波正演及偏移成像。E-mail:jphuangchina@gmail.com。
  • 相关文献

参考文献19

  • 1BAYSAL E, KOSLOFF D D, SHERWOOD J W C. Re-verse time migration[J]. Geophysics, 1983,48 (11):1514-1524.
  • 2WHITMORE N D. Iterative depth migration by backwardtime propagation[C/ OL] / /1983 SEG Annual Meeting.Las Vegas, Nevada, September 11-15, 1983: SEG Tech-nical Program Expanded Abstracts, c1983: 382-385.[2014-6-12]. http:/ / library. seg. org/ doi/ pdfplus/10郾1190/1郾1851068.
  • 3MCMECHAN G A. Migration by extrapolation of time-de-pendent boundary values[J]. Geophysical Prospecting,1983,31(3):413-420.
  • 4ALTERMAN Z, KARAL F C. Propagation of elastic wavesin layered media by finite difference methods[J]. Bulletinof the Seismological Society of America, 1968,58(1):367-398.
  • 5方刚,FOMEL Sergey,杜启振.交错网格Lowrank有限差分及其在逆时偏移中的应用[J].中国石油大学学报(自然科学版),2014,38(2):44-51. 被引量:14
  • 6杜启振,秦童,朱钇同,毕丽飞.A study of perfectly matched layers for joint multicomponent reverse-time migration[J].Applied Geophysics,2010,7(2):166-173. 被引量:3
  • 7YAN J, SAVA P. Isotropic angle-domain elastic reverse-time migration [J]. Geophysics, 2008,73 (6): S229-S239.
  • 8DELLINGER J, ETGEN J. Wave-field separation in two-dimensional anisotropic media[J]. Geophysics, 1990,55(7):914-919.
  • 9AID K, RICHARDS P G. Quantitative seismology: theo-ry and methods[J]. San Francisco, 1980.
  • 10ROSALES D A, FOMEL S, BIONDI B L, et al. Wave-equation angle-domain common-image gathers for con-verted waves[J]. Geophysics, 2007,73(1):S17-S26.

二级参考文献41

  • 1张永刚.地震波场数值模拟方法[J].石油物探,2003,42(2):143-148. 被引量:109
  • 2李文杰,魏修成,刘洋.声波正演中一种新的边界条件——双重吸收边界条件[J].石油物探,2004,43(6):528-531. 被引量:11
  • 3赵海波,王秀明,王东,陈浩.完全匹配层吸收边界在孔隙介质弹性波模拟中的应用[J].地球物理学报,2007,50(2):581-591. 被引量:49
  • 4ALTERMEN Z S,LOEWENTHAL D.Seismic wave in a quarter and three quarter plane[J].Geophysics J Roy Astr Soc,1970,20 (1):101-126.
  • 5CERJAN C,KOSLOFF D,KOSLOFF R,et al.A nonreflecting boundary condition for discrete acoustic and elastic wave equations[J].Geophysics,1985,50 (4):705-708.
  • 6KOSLOFF R,KOSLOFF D.Absorbing boundaries for wave propagation problems[J].Journal Computation Physics,1986,63:363 -376.
  • 7CLAYTON R,ENGQUIST B.Absorbing boundary conditions for acoustic and elastic wave equations[J].Bull Seismic Society America,1977,67(6):1 529-1 540.
  • 8REYNOLDS.Boundary conditions for the numerical solution of wave propagation problems[J].Geophysics,1978,43(6):1099-1 110.
  • 9STACEY R.Improved transparent boundary formulations for the elastic-wave equation[J].Bull Seismic Society America,1988,78(6):2089-2097.
  • 10BERENGER J P.A perfectly matched layer for the absorption of electromagnetics waves[J].Journal Computation Physics,1994,114:185-200.

共引文献63

同被引文献218

引证文献24

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部