期刊文献+

基于PCA-BPNN的学生写作成绩预测模型研究 被引量:8

Study of student score prediction model based on PCA-BPNN
在线阅读 下载PDF
导出
摘要 针对传统学生英语写作成绩预测方法准确率偏低的情况,提出一种基于主成分分析(PCA)和BP神经网络相结合的写作成绩预测模型。首先,用PCA对所建立的学生写作评价体系作数据降维处理,提取前3个主成分,构建了新的样本矩阵,再对BP神经网络进行训练和泛化能力测试。仿真结果表明:单一的BPNN预测最大相对误差为-2.165%,PCA-BPNN预测最大相对误差仅为-0.824 2%,PCA-BPNN简化了网络结构,提高了单一BPNN的训练速率、预测精度和泛化能力,验证了所提出的模型的有效性。 In view of the low accuracy of traditional prediction method of students' English writing scores, a prediction model based on principal component analysis (PCA) and BP neural network was proposed. First, the dimensions of the evaluation system of students' writings were reduced by PCA. The first three principal components were extracted to create a new sample matrix. Then the BP neural network was trained and its generalization ability was tested. The simulation results show that the maximum relative error of prediction produced by the simple BPNN is --2. 165%, while the one produced by the PCA-BPNN is only --0. 824 2%. The PCA-BPNN simplifies the network structure. It also improves the training rate, prediction accuracy and generalization ability of the simple BPNN. The effectiveness of the proposed model is verified.
出处 《国外电子测量技术》 2015年第12期35-38,共4页 Foreign Electronic Measurement Technology
基金 辽宁省教育厅科学研究一般项目(W2015015) 辽宁省社会科学基金(L14CYY022)资助项目
关键词 主成分分析 BP神经网络 成绩预测 principal component analysis (PCA) BP neural network score prediction
作者简介 胡帅,1980年出生,硕士,讲师。主要研究方向为语料库语言学、神经网络理论及其应用。Email:hushuai6@163.com
  • 相关文献

参考文献16

二级参考文献134

共引文献259

同被引文献90

引证文献8

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部