期刊文献+

基于双字符搜索的GRASP-CSP算法改进

IMPROVEMENT OF GRASP-CSP ALGORITHM BASED ON DOUBLE CHARACTER SEARCH
在线阅读 下载PDF
导出
摘要 距离最近字符串问题CSP(The Closest String Problem)是一个组合优化问题,在生物信息学和编码理论中有着很重要的应用。关于CSP问题采用一种基于概率启发式的算法,即GRASP-CSP算法。针对GRASP-CSP算法存在的每次迭代过程相对独立、搜索范围狭窄、判断指标过于单一这三大问题,提出通过强化策略,引入强Pareto优化的概念,特别是扩展局部搜索范围,对GRASPCSP进行进一步的优化。最后,给出基于GRASP-CSP改进之后的新算法,即IGRASP-CSP。实验结果表明,改进之后的新算法能够进一步缩小字符解与给定字符串集的汉明距离,从而得到关于CSP问题的进一步优化解,获得满意的优化效果,并从一维的应用扩展至多维。 The closest string problem (CSP) is a combinatorial optimisation problem. It has very important applications in bioinformatics and coding theory. For this problem, we use a probability heuristic-based algorithm, i.e. GRASP-CSP. It has three problems: relatively independent in every iteration process, narrow search range, and single judgment indicator. In light of these, we propose to further optimise GRASP-CSP by enforcing strategy and introducing strong Pareto optimisation concept, in particular, expanding the local search scope. Finally, we give an improved GRASP-CSP-based new algorithm, namely IGRASP-CSP. Experimental results indicate that the improved algorithm is able to further shorten the Hamming distance between character solution and given string set, so that obtains further optimised solution in regard to CSP problem, achieves satisfactory optimisation results, and expands from one dimension to multi-dimension.
机构地区 江南大学理学院
出处 《计算机应用与软件》 CSCD 2016年第2期203-207,258,共6页 Computer Applications and Software
基金 国家自然科学基金项目(11271163)
关键词 CSP GRASP Pareto优化强化策略双字符 CSP GRASP Pareto optimisation Enforcing strategy Double character
作者简介 李珊珊,硕士生,主研领域:智能计算与生物统计。 郑晨,硕士生。 朱平,教授。
  • 相关文献

参考文献11

  • 1Sayyed R M, Navid N E. A GRASP algorithm for the Closest String Problem using a probability-based heuristic [ J ]. Computers & Opera- tions Research ,2012,39 (2) :238 - 248.
  • 2Soleimani-damaneh M. An optimization modeling for string selection in the molecular biology using Pareto optimality[ J]. Applied Mathemati- cal Modeling,2011,35 ( 8 ) :3887 - 3892.
  • 3Sayyed R M, Farzaneh T. An improved algorithm for the longest com- mon subsequence problem [ J ]. Computers & Operations Research, 2012,39(3) :512 -520.
  • 4Li-Yeh Chuang, Chih-Jen Hsibo, Cheng-Hong Yang. Chaotic particle swarm optimization for data clustering[ J]. Expert Systems with Appli- cations, 2011,38 (12) : 14555 - 14563.
  • 5Feo, Resende. A probabilistic heuristic for a computationally difficult set covering problem [ J ]. Operations Research Letters, 1989,8 (2) :67 -71.
  • 6Julstrom B A. A data-based coding of candidate strings in the closest string problem[ C ]//GECCO: proceedings of the llth annual conference companion on genetic and evolutionary computation conference, 2009.
  • 7冯丽娟,严洪森,朱莉莉.基于改进贪婪随机自适应算法的车间调度优化[J].计算机技术与发展,2009,19(10):44-46. 被引量:2
  • 8孙力勇,张焰,蒋传文.求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法[J].电网技术,2006,30(13):44-48. 被引量:15
  • 9乐美龙,王婷婷,吴聪聪.基于改进的GRASP算法的飞机优化恢复研究[J].江苏科技大学学报(自然科学版),2013,27(2):166-170. 被引量:4
  • 10李军,郭玉华,王钧,景宁.基于贪婪随机自适应过程的多类型卫星联合任务规划技术[J].系统工程与电子技术,2010,32(10):2162-2165. 被引量:5

二级参考文献63

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部